Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
Ta có :
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)
\(A=3\)
P/s tham khảo nha
hok tốt
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
Gọi thương của phép chia f(x) cho x-2 là A(x); cho x-3 là B(x)
Ta có: f(x) = (x-2).A(x) + 5
f(x) = (x-3).B(x) + 7
Ap dụng định lý Bơ-du ta có:
f(2) = 5
f(3) = 7
Gọi dư của phép chia f(x) cho (x-2)(x-3) là ax+b
Ta có:
f(x) = (x-2)(x-3).(x2-1) + ax + b
\(\Rightarrow\)f(2) = 2a + b = 5
f(3) = 3a + b =7
\(\Rightarrow\)a = 2; b = 1
vậy f(x) = (x-2)(x-3)(x2 - 1) + 2x + 1
= x4 - 5x3 + 5x2 + 7x - 5
cho mình hỏi tại sao dư của f(x) cho (x-2)(x-3) lại phải là ax+b mà không phải cái khác vậy bạn