Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
x+y=-2
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{3+4}=\frac{-2}{7}\)
Suy ra x=\(\frac{-6}{7}\)
y=\(\frac{-8}{7}\)
z= thay vào dãy tỉ số tính hok tốt
a.
Chứng minh ΔCHO=ΔCFOΔCHO=ΔCFO (cạnh huyền – góc nhọn)
suy ra: CH = CF. Kết luận ΔFCHΔFCH cân tại C.
- Vẽ IG //AC (G ∈∈ FH). Chứng minh ΔFIGΔFIG cân tại I.
- Suy ra: AH = IG, và ∠IGK=∠AHK∠IGK=∠AHK.
- Chứng minh ΔAHK=ΔIGKΔAHK=ΔIGK (g-c-g).
- Suy ra AK = KI..
b.
Vẽ OE ⊥⊥ AB tại E. Tương tự câu a ta có: ΔAEH,ΔBEFΔAEH,ΔBEF thứ tự cân tại A, B. Suy ra: BE = BF và AE = AH.
BA = BE + EA = BF + AH = BF + FI = BI. Suy ra: ΔABIΔABI cân tại B.
Mà BO là phân giác góc B, và BK là đường trung tuyến của ΔABIΔABI nên: B, O, K là ba điểm thẳng hàng.
bài 2b.
\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=2019\)
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019\)
Với \(a< 0\left(a\in Z\right)\)ta có:\(\left|a\right|+a=-a+a=0⋮2\)
Với \(a=0\)ta có:\(\left|a\right|+a=0⋮2\)
Với \(a>0\)ta có:\(\left|a\right|+a=2a⋮2\)
Vậy với mọi số nguyên a thì ta luôn có:\(\left|a\right|+a⋮2\)
Áp dụng vào bài toán,ta được:\(\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x⋮2\)
\(\Rightarrow2019⋮2\)(vô lý)
Vậy không thể tồn tại số nguyên x,y,z thỏa mãn:\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)
A. dk \(\hept{\begin{cases}y+z+1\ne0\\x+z+1\ne0\\x+y\ne2\end{cases}}\)
Ap dung tinh chat day ti so bang nhau ta co
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (1)
=> \(x+y+z=\frac{1}{2}\) (*) => y+z =1/2 - x
(1) suy ra \(y+z+1=2x\)
<=> \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
thay vao (*) => y+z=0
tu (1) lai suy ra \(x+z+1=2y\)
<=> \(\hept{\begin{cases}z+y=0\\\frac{1}{2}+z+1=2y\end{cases}\Rightarrow\hept{\begin{cases}z=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}}\)
vay \(\left\{x;y;z\right\}=\left\{\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(\left(x-11+y\right)^2+\left(x-y+4\right)^2=0\)
<=> \(\hept{\begin{cases}x-11+y=0\\x-y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=\frac{7}{2}\end{cases}}}\)
Vay \(\left\{x;y\right\}=\left\{\frac{15}{2};\frac{7}{2}\right\}\)
a)x/4=y/3=z/9
nên x/4=3y/9=4z/36
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)
Do đó, x/4=2 nên x=4*2=8
y/3=2 nên x=2*3=6
z/9=2 nên z=9*2=18
b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k
=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3
mà x*y*z=20 nên 540*k3=20
k3=20/540=1/27=(1/3)^3
=>k=1/3
=>x=12*1/3=4
y=9*1/3=3
z=5*1/3=5/3
c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9
Áp dụng tc dãy tỉ số bằng nhau, ta được:
x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2
nên x=15 hoặc x=-15
y2/49=9 nên y2=9*49=441=212=(-21)2
nên y=21 hoặc y=-21
z2/9=9 nên z2=9*9=92 =(-9)2
nên z=9 hoặc z=-9
b. Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\) (1)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)(2)
Từ (1) và (2) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{11}{33}=\frac{1}{3}\)
\(\frac{x}{15}=\frac{1}{3}\Rightarrow x=\frac{1}{3}\cdot15=5\) \(\frac{y}{10}=\frac{1}{3}\Rightarrow y=\frac{1}{3}\cdot10=\frac{10}{3}\)
\(\frac{z}{8}=\frac{1}{3}\Rightarrow z=\frac{1}{3}\cdot8\Rightarrow z=\frac{8}{3}\)
c. Ta thấy: \(\left(x+2\right)^{n+1}\ge0,\left(x+2\right)^{n+11}\ge0\) với mọi x.
Mà \(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\Rightarrow x+2\in\left\{0,1,-1\right\}\)
TH1: x + 2 = 0 => x = 0 - 2 => x = -2
TH2: x + 2 = 1 => x = 1 - 2 => x = -1
TH3: x + 2 = -1 => x = -1 - 2 => x = -3