Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x+y=3\Rightarrow\left(x+y\right)^2=3^2=9\)
\(=x^2+2xy+y^2=9\)
\(\Rightarrow x^2+y^2+2.2=9\)
\(\Rightarrow x^2+y^2+4=9\)
\(\Rightarrow x^2+y^2=5\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left(x^2+y^2-2\right)\)
\(=3\left(5-2\right)=3.3=9\)
B3) a) x(x-5)-4(x-5)=0
<=> (x-4)(x-5)=0
TH1 :x-4=0
<=.x=4
TH2 : x-5=0
<=>x=5
b) x(x-6)-7x-42=0
<=>x(x+6)-7(x+6)=0
<=>(x-7)(x+6)=0
th1;x-7=0
<=>x=7
th2; x+6=0
<=>x=-6
c)x^3-5x^2+x-5=0
<=> x(x^2+1)-5(x^2+1)=0
<=> (x-5)(x^2+1)=0
th1:x-5=0
<=>x=5
TH2 : x^2+1=0
<=> x^2=-1 ( vo li )
=> th2 ko tồn tại
nho thick nha
Bài 3
a, x(x-5)-4(x-5)=0
(x-4)(x-5)=0
=>\(\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
b,x(x+6)-7(x+6)=0
(x-7)(x+6)=0\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
c,x^2(x-5)+(x-5)=0
(x^2+1)(x-5)=0
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\Phi\\x=5\end{cases}}\)
Hay lắm bạn ơi! Nhưng ở chỗ kết luận sau khi nói bthuc có GTNN là 2006 thì bạn phải tìm ra x,y để bthuc trên đạt GTNN
VD: x^2 + y^2 - 2x + 6y + 2016 có giá trị nhỏ nhất là 2006 đạt được khi x=1; y=-3
Như vậy mới được điểm tối đa
f, x2+y2-2x+6y+10=0
<=>(x2-2x+1)+(y2+6y+9)=0
<=>(x-1)2+(y+3)2=0
Mà \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
g, x2+y2+1=xy+x+y
<=>2(x2+y2+1)=2(xy+x+y)
<=>2x2+2y2+2=2xy+2x+2y
<=>2x2+2y2+2-2xy-2x-2y=0
<=>(x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)=0
<=>(x-y)2+(x-1)2+(y-1)2=0
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\x=1\\y=1\end{cases}\Rightarrow}x=y=1}\)
h, 5x2-2x(2+y)+y2+1=0
<=>5x2-4x-2xy+y2+1=0
<=>(4x2-4x+1)+(x2-2xy+y2)=0
<=>(2x-1)2+(x-y)2=0
Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}\Rightarrow\left(2x-1\right)^2+\left(x-y\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=y\end{cases}\Rightarrow}x=y=\frac{1}{2}}\)
(x+y+z)^2=0
x^2+y^2+z^2+2xy +2yz+2xz=0
x^2+y^2+z^2+2(xy+yz+xz)=0
Vì xy + yz +xz=0 nên x^2+y^2+z^2=0.
Vì x^2, y^2, z^2 luôn lớn hơn hoặc bằng 0 mà x^2+y^2+z^2=0.Vì vậy:
x^2=0, y^2=0, z^2=0
x=y=z=0
Thay x=y=z=o vào S ta được: S=1
theo gt
11x+6y+2015=0
x-y+3=0=>x=y-3
thay vô biến đổi chút là ra