K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Phản chứng :

giả sử n = 2 , => n5 - 1 = 25 - 1 = 31 ko chia hết cho 4 

Vậy điều cần chứng minh là sai

16 tháng 10 2017

mình cám ơn nhé
 

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

20 tháng 12 2018

Bài 1:

Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

bài 2:

Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)

\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)

\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

21 tháng 10 2018

ai nhanh thì mình tích cho nhé

21 tháng 10 2018

Ta có: 

8n + 111111..11(với n thuộc N sao)

Ta có tổng các chữ số của 11...1(n cs 1)

=n

suy ra 8n+n=9n

suy ra tổng trên chia hết cho 9

t i c k mk nha

24 tháng 12 2016

1) Gọi số đề bài cho là aab (a khác 0; a;b là các chữ số)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà aab chia hết cho 3 nên a + a + b = 2a + b chia hết cho 3 (1)

Vì aab chia hết cho 4 nên ab = 8a + 2a + b chia hết cho 4

Mà 8a chia hết cho 4 nên 2a + b chia hết cho 4 (2)

Từ (1) và (2), do (3;4)=1 nên 2a + b chia hết cho 12

=> đpcm

3) Do (7;3)=1 nên (7n;3)=1

=> 7n chia 3 dư 1 hoặc 2

+ Nếu 7n chia 3 dư 1 thì 7n - 1 chia hết cho 3

=> (7n + 1)(7n - 1) chia hết cho 3

+ Nếu 7n chia 3 dư 2 thì 7n + 1 chia hết cho 3

=> (7n + 1)(7n - 1) chia hết cho 3

Vậy ta có đpcm

24 tháng 12 2016

mình chỉ cần bài 1 và bài 4 thôi nhéhaha

23 tháng 10 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5 

2 tháng 12 2017

n^2 + n + 1 = n( n + 1 ) + 1

n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ . 

Mà số lẻ thì không chia hết cho 2 . 

=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2 

=> n( n + 11 ) + 1 cũng không chia hết cho 4 

Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6 

=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7 

Vậy n( n + 1 ) + 1 không chia hết cho 5