Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài đầy đủ nè :
a) (x-3)10 = (x-3)30
Vì (x-3)10 < (x-3)30 nếu x > 1 và (x-3)10 > (x-3)30 với x < -1
=>x-3=0 hoặc x-3=1 hoặc x-3=-1
x=3 hoặc x=4 hoặc x=2
b) b) (x + 1,5)8 và (2,7 - y)12 \(\ge\) 0
Mà (x+1,5)8+(2,7-y)12 = 0
=> (x + 1,5)8 = 0 và (2,7 - y)12
=> x + 1,5 = 0 và 2,7 - y = 0
=> x = -1,5 và y = 2,7
a) \(2\left(x^2-4\right)^4+5\left(y^3+8\right)^2=0\)
Có 2\(\left(x^2-4\right)^4\) và \(5\left(y^3+8\right)^2\ge0\)
Mà \(2\left(x^2-4\right)^4+5\left(y^3+8\right)^2=0\)
=> \(2\left(x^2-4\right)^4=0\) và \(5\left(y^3+8\right)=0\)
+) \(2\left(x^2-4\right)^4=0\) => \(x^2-4=0=>x^2=4=>x=2\)
b) \(3\left|2x^2-8\right|+7\left(2y-1\right)^2=0\)
Có \(3\left|2x^2-8\right|\ge0\) ; \(7\left(2y-1\right)^2\ge0\)
Mà \(3\left|2x^2-8\right|+7\left(2y-1\right)^2=0\)
=> \(3\left|2x^2-8\right|=0\) ; \(7\left(2y-1\right)^2=0\)\
+) \(3\left|2x^2-8\right|=0\) => \(2x^2-8=0=>2x^2=8=>x^2=4=>x=2\)
+) \(7\left(2y-1\right)^2=0\)
=> 2y-1=0
=> 2y = 1
=> y= \(\dfrac{1}{2}\)
1.
a) ( 57 + 59 ) . ( 68 + 610 ) . ( 24 - 42 )
= ( 57 + 59 ) . ( 68 + 610 ) . 0
= 0
b) 9 < 3x < 27
32 < 3x < 33
2 < x < 3
Vậy 2 < x < 3
2.
a) xy - 2x = 0
x ( y - 2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}}\)
b) ( x- 4 ) . ( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
c) Ta có : 3n+2 + 3n = 3n . 32 + 3n = 3n . ( 32 + 1 ) = 3n . 10 \(⋮\)10
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a, \(\left(x+1\right)^8=16\left(x+1\right)^4\)
\(\Rightarrow\left(x+1\right)^8-16\left(x+1\right)^4=0\)
\(\Rightarrow\left(x+1\right)^4\left[\left(x+1\right)^4-16\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^4=0\\\left(x+1\right)^4-16=0\end{matrix}\right.\)
+) \(\left(x+1\right)^4=0\Rightarrow x=-1\)
+) \(\left(x+1\right)^4-16=0\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy x = -1 hoặc x = 1 hoặc x = -3
b, Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^8\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^2+\left(y+1\right)^8\ge0\)
Mà \(\left(x-1\right)^2+\left(y+1\right)^8=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+1\right)^8=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy x = 1 và y = -1
c, Ta có: \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2+1\ge1\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy \(MIN_{\left(x-3\right)^2+\left(y+1\right)^2+1}=1\) khi x = 3, y = -1
1, CÓ( X+1,5)8 VÀ (2,7 -Y)12> HOẶC = 0
MÀ (X+1,5)8 + (2,7-Y)12 =0
SUY RA \(\hept{\begin{cases}X+1,5=0\\2,7-Y=0\end{cases}}\)
SUY RA\(\hept{\begin{cases}X=-1,5\\Y=2,7\end{cases}}\)