Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
1.
a) ( 57 + 59 ) . ( 68 + 610 ) . ( 24 - 42 )
= ( 57 + 59 ) . ( 68 + 610 ) . 0
= 0
b) 9 < 3x < 27
32 < 3x < 33
2 < x < 3
Vậy 2 < x < 3
2.
a) xy - 2x = 0
x ( y - 2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}}\)
b) ( x- 4 ) . ( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
c) Ta có : 3n+2 + 3n = 3n . 32 + 3n = 3n . ( 32 + 1 ) = 3n . 10 \(⋮\)10
1, CÓ( X+1,5)8 VÀ (2,7 -Y)12> HOẶC = 0
MÀ (X+1,5)8 + (2,7-Y)12 =0
SUY RA \(\hept{\begin{cases}X+1,5=0\\2,7-Y=0\end{cases}}\)
SUY RA\(\hept{\begin{cases}X=-1,5\\Y=2,7\end{cases}}\)
Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.
4)
a)Vì I2x+3I\(\ge\)0
=>-I2x+3I\(\le\)0
=>8-I2x+3I\(\le\)8
Dấu = xảy ra khi : 2x+3=0
2x=-3
x=-3/2
Vậy GTLN của A là 8 tại x=-3/2
b)Vì (2x-1)2\(\ge\)0;Iy+3I\(\ge\)0
=>-(2x-1)2\(\le\)0;-Iy+3I\(\le\)0
=>11-(2x-1)2-Iy+3I\(\le\)11
Dấu = xảy ra khi: 2x-1=0 và y+3=0
x=1/2 và y=-3
Vậy GTNN của B=11 tại x=1/2 và y=-3
a, (x-3)(x-7)<0
=> +, x-3>0=>x>3=> x=4,5,6
x-7<0 x<7
+, x-3<0=>x<3=> x ko có g trị
x-7>0 x>7
a) \(2\left(x^2-4\right)^4+5\left(y^3+8\right)^2=0\)
Có 2\(\left(x^2-4\right)^4\) và \(5\left(y^3+8\right)^2\ge0\)
Mà \(2\left(x^2-4\right)^4+5\left(y^3+8\right)^2=0\)
=> \(2\left(x^2-4\right)^4=0\) và \(5\left(y^3+8\right)=0\)
+) \(2\left(x^2-4\right)^4=0\) => \(x^2-4=0=>x^2=4=>x=2\)
b) \(3\left|2x^2-8\right|+7\left(2y-1\right)^2=0\)
Có \(3\left|2x^2-8\right|\ge0\) ; \(7\left(2y-1\right)^2\ge0\)
Mà \(3\left|2x^2-8\right|+7\left(2y-1\right)^2=0\)
=> \(3\left|2x^2-8\right|=0\) ; \(7\left(2y-1\right)^2=0\)\
+) \(3\left|2x^2-8\right|=0\) => \(2x^2-8=0=>2x^2=8=>x^2=4=>x=2\)
+) \(7\left(2y-1\right)^2=0\)
=> 2y-1=0
=> 2y = 1
=> y= \(\dfrac{1}{2}\)