K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Xin lỗi, mình sai đề :

a) (x2 - 1) . ( x2 - 4) < 0

16 tháng 7 2017

\(\text{b) }2+4+6+...+2x=210\\ \Leftrightarrow2\left(1+2+3+...+x\right)=210\\ \Leftrightarrow1+2+3+...+x=105\\ \Leftrightarrow1+2+3+...+x=1+2+3+...+14\\\Leftrightarrow\left(1+2+3+...\right)+x=\left(1+2+3+...\right)+14\\ \Leftrightarrow x=14 \)

Vậy \(x=14\)

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

Bài 1 : So sánh cặp số :2225 và 3150  và Bài 2 : chứng minh rằng :817 – 279  – 913 chia hết cho 405.87 – 218 chia hết cho 14.Bài 3 : cho x > y > 0. chứng minh rằng :x3 > y3x4 > y4Bài 4 : chứng minh rằng :Cho ac = bd thì Cho  với b, d là số nguyên dương  thì .Bài 5 :  tìm x :(2x + 1)(x – 2)(5  – 3x) = 0|x – 1| + 2x  = 8(3x + 5)2 =  Bài 6 : tìm các số x,y , z thỏa :;   và 2x + 5y – 2z = 96 và 2x – 3y + z =...
Đọc tiếp

Bài 1 : So sánh cặp số :

  1. 2225 và 3150
  2.   và 

Bài 2 : chứng minh rằng :

  1. 817 – 279  – 913 chia hết cho 405.
  2. 87 – 218 chia hết cho 14.

Bài 3 : cho x > y > 0. chứng minh rằng :

  1. x3 > y3
  2. x4 > y4

Bài 4 : chứng minh rằng :

  1. Cho ac = bd thì 
  2. Cho  với b, d là số nguyên dương  thì .

Bài 5 :  tìm x :

  1. (2x + 1)(x – 2)(5  – 3x) = 0
  2. |x – 1| + 2x  = 8
  3. (3x + 5)
  4.  

Bài 6 : tìm các số x,y , z thỏa :

  1. ;   và 2x + 5y – 2z = 96
  2.  và 2x – 3y + z = 7

Bài 7 : tính :

  1. S = (-1) + 2 +(-3) + 4 …+(-99) + 100
  2. A = 1 – 3 + 5 – 7 + …+ 149 – 151
  3. B = 2 – 4 + 6 – 8 + … + 102 – 104.
  4. C = 

Bài 8 : tìm giá trị lớn nhất và nhỏ nhất (nếu có ) :

  1. A  = 2 + |x – 1|
  2. B = -|2x +3 | + 5
  3. C = |2x +1| + |3 – 2x|

Bài 9 : một lớp học nếu xếp hàng 5 thì thừa 3, nếu xếp hàng 7 thì thừa 1. Hỏi lớp học có bao nhiêu học sinh, biết số học sinh từ 40 đến 60 học sinh.

Bài 10 : cho hàm số : y = f(x) = 3x2 – 1.

  1. Tính f(-2), f(1/4).
  2. Tìm x để f(x) = 47.
  3. Chứng minh f(x) = f(-x) với mọi x
0
17 tháng 12 2018

a, suy ra (x-1)x+2 - (x-1)x+6 = 0

suy ra (x-1)x+2 . 1 - (x-1)x+2. (x-1)4= 0

suy ra (x-1)x+2 . (1-(x-1)4) =0

suy ra (x-1)x+2 = 0

hoặc 1-(x-1)4=0

với (x-1)x+2 =0 suy ra x-1 = 0 suy ra x = 1

với 1- ( x-1)4 = 0 suy ra (x-1)4 = 1suy ra x-1 = 1 hoặc x-1 = -1

suy ra x= 2 hoặc x=0

vậy x = 0,1,2

b, làm tương tự

6 tháng 7 2016

a) A = | x - 3 | + 1 

| x - 3 |0

Nên | x - 3 |+11

Dấu = xảy ra khi x-3=0 hay x=3

Vậy GTNN của A=1 khi x=3

b ) B = | 6 - 2x | - 5 

              | 6 - 2x |0

Nên |6-2x|-5-5

Dấu = xảy ra khi 6-2x=0 hay x=3

Vậy GTNN của B=-5 khi x=3

c ) C = - ( x + 1 ) 2 - |2y - y | + 11 

Vì ( x + 1 ) 20

Nên -( x + 1 ) 20

Vì  |2y - y |0

Nên  - |2y - y |0

 C = - ( x + 1 ) 2 - |2y - y | + 11 11

Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0

Vậy GTLN của C=11 khi x=-1 và y=0

d ) D = ( x + 5 )2 + (2y - 6 )2 + 1

Vì  ( x + 5 )2 0

      (2y - 6 )2 0

 D = ( x + 5 )2 + (2y - 6 )2 + 11

            Do đó dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3

Vậy GTNN của D=1 khi x=-5;y=3

11 tháng 12 2016

a, (x-3)2 - 2(x-3) + 1 < 1  <=> (x-3-1)2 <1 <=> (x-4)2 <1 <=> -1< x-4<1 <=> 3<x<5 mặt khác x thuộc z => x= 4

b,\(\frac{x+3}{2x-1}\)< 1 đk x khác 1/2

<=> \(\frac{x+3}{2x-1}\)- 1 <0 <=> \(\frac{x+3-\left(2x-1\right)}{2x-1}\)< 0 <=> \(\frac{2-x}{2x-1}\)< 0 => 2 TH xảy ra\(\orbr{\begin{cases}\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\\\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\end{cases}}\)

TH1 \(\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\)<=> 1/2 <x<2 mà x thuộc z => x= 1

TH2 \(\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\)<=>\(\hept{\begin{cases}x>\frac{1}{2}\\x>2\end{cases}}\)<=> x>2 và x thuộc z

c, x(x+3) >x2(x+3) <=> x(x+3)- x2(x+3) > 0 <=> x(x+3)(1-x)<0 mà x thuộc z

x -3 0 1  
x+3  - 0   +     + 
1-x  +   +   -
x(x+3)(1-x)

  +

(loại)

0

(loại)

  - 

(TM)

 0

(loại)

 

(loại)

 -

(TM)


=> \(\orbr{\begin{cases}-3< x< 0\\x>1\end{cases}}\)vì x thuộc z

TH1 -3<x<0 => x=-1 hoặc x= -2 vì x thuộc z

TH2  x>1 và x thuộc z

d, x< x <=> x - x< 0 <=> x(1-x) < 0 <=> 2 TH xảy ra

TH1 \(\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\)<=> không xảy ra

 TH2 \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)<=> 0 <x<1