K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ssssssssssssssssssssss

23 tháng 7 2019

a) Ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Lại có : \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(x-\frac{1}{2}=0=>x=\frac{1}{2}\)

Vậy biểu thức có giá trị nhỏ nhất là \(\frac{3}{4}\) khi \(x=\frac{1}{2}\)

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

2 tháng 10 2018

a) \(A=x^2+6x+10\)

\(A=x^2+2\cdot x\cdot3+3^2+1\)

\(A=\left(x+3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

b) \(B=2x^2+y^2+2xy+4x+15\)

\(B=\left(x^2+2xy+y^2\right)+\left(x^2+2\cdot x\cdot2+2^2\right)+11\)

\(B=\left(x+y\right)^2+\left(x+2\right)^2+11\ge11\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2\\x=-2\end{cases}}\)

31 tháng 8 2016

Bài 1 :

Ta có :

\(A=2x^2-6x\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Có : \(2\left(x-\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

\(\Rightarrow A_{min}=-\frac{9}{2}\Leftrightarrow x-\frac{3}{2}=0\)

\(\Leftrightarrow x=\frac{3}{2}\)

Vậy ...

Bài 2 :

\(A=4x-x^2-5=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\)

Bạn xem lại đề.

Với \(x=2\Rightarrow A=-1< 0\)

11 tháng 1 2019

\(A=\frac{6}{x^2-2x+3}=\frac{6}{x^2-2x+1+2}=\frac{6}{\left(x-1\right)^2+2}\le3\)

Dấu = xảy ra khi x-1=0

=> x=1

B tương tự

bài 2:

\(A=\frac{5}{-x^2+2x}=\frac{5}{-\left(x^2-2x+1\right)+1}=\frac{5}{-\left(x-1\right)^2+1}\le5\)(x khác 2)

dấu = xảy ra khi x-1=0

=> x=1

tìm GTLN chứ????? 

30 tháng 10 2019

a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Max của 3x - x2 = 9/4 <=> x = 3/2

b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=>  x - 3 = 0 <=> x = 3

Vậy Min của x2 - 6x + 18 = 9 <=> x = 3

30 tháng 10 2019

c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x

Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2

Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2

d) Ta có : x2 + y2 - 2x + 6y + 2019

= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009

= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y=  -3

12 tháng 7 2018

1.

A=\(4x^2-4x+5\)

A=\(\left(2x\right)^2-4x+1+4\)

A=\(\left(2x-1\right)^2+4\)

\(\left(2x-1\right)^2\)≥0 với mọi x

\(\left(2x-1\right)^2+4\)≥4 với mọi x

Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0

⇔2x-1=0

⇔x=\(\dfrac{1}{2}\)

Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)

B=\(3x^2+6x-1\)

B=3(\(\left(x^2+2x\right)\)-1

B=\(3.\left(x^2+2x-1+1\right)-1\)

B=\(3.\left(x+1\right)^2-3-1\)

B=\(3\left(x-1\right)^2-4\)

\(3.\left(x-1\right)^2\)≥0 với mọi x

\(3\left(x-1\right)^2-4\)≥-4 với mọi x

dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)

⇔x-1=0

⇔x=1

vậy GTNN của B=-4 khi x=1

6 tháng 8 2019

a) \(A=x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\)

Vậy \(A_{min}=5\Leftrightarrow x=2\)

6 tháng 8 2019

b) \(B=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)