Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d là ƯCLN (12n+1;30n+2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
b) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
a) Giả sử: 12n+1 / 30n+2 = d , ta có : (12n+1) chia hết d và (30n+2) chia hết cho d
Suy ra :[ 30(12n+1) / 12(30n+2) ]
[ 5 (12+1) / 2 ( 30n+2) ] suy ra : (60n+5)-(60n+4) chia hết cho d hay chia hết cho 1
vậy 12n+1 / 30n+2 là phân số tối giản với mọi n thuộc Z
B) 1/22+1/32+1/42+...+1/1002
< 1/1x2 +1/2x3 +1/3x4 +...+ 1/99x100
< 1/1 - 1/2 + 1/2 -1/3 +1/3 -1/4 +...+1/99 - 1/100
< 1 - 1/100 = 99 / 100
Vì 99 /100 < 1 nên 1/22 + 1/32 + 1/42+...+ 1/1002 <1
1.a) 222333 và 333222
=> (111.2)333 và (111.3)222
=> [(111.2)3]111 và [(111.3)2]111
=> 1113.8 và 1112.9
=> 888.1112 và 1112.9
Vì 888 > 9 => 222333 > 333222
b) 1x8y2 chia hết cho 36
=> 1x8y2 chia hết cho 4 và 9 (vì 36 = 4.9)
1x8y2 chia hết cho 4 => y2 chia hết cho 4 => y = {1;3;5;7;9}
Nếu y = 1 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 1 + 2 chia hết cho 9 => 12 + x chia hết cho 9 => x = 6
Nếu y = 3 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 3 + 2 chia hết cho 9 => 14 + x chia hết cho 9 => x = 4
Nếu y = 5 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 5 + 2 chia hết cho 9 => 16 + x chia hết cho 9 => x = 2
Nếu y = 7 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 7 + 2 chia hết cho 9 => 18 + x chia hết cho 9 => x = {0;9}
Nếu y = 9 và 1x8y2 chia hết cho 9 => 1 + x + 8 + 9 + 2 chia hết cho 9 => 20 + x chia hết cho 9 => x = 7
2.b)S = 30 + 32 + ... + 32002
=> S = (30 + 32 + 34) + ... + (31998 + 32000 + 32002)
=> S = (30 + 32 + 34) + ... + 31998.(30 + 32 + 34)
=> S = 91 + ... + 31998.91
=> S = 91.(1 + ... + 31998) chia hết cho 7
a) S = 30 + 32 + ... + 32002
=> 32S = 32 + 34 + ... + 32004
=> 32S - S = 32 + 34 + ... + 32004 - 30 - 32 - ... - 32002
=> 8S = 32004 - 1
=> S = 32004 - 1/8
a) Ta thấy: 1/2^2<1/1.2
1/3^2<1/2.3
1/4^2<1/3.4
…………...
1/100^2<1/99.100
=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100
Mà 99/100<1 => 1/22 + 1/32 + 1/42 + ... + 1/1002<1
b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)
=>A>50/150>1/3 (1)
Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)
=>A<1/2 (2)
Từ (1) và (2) =>1/3<A<1/2
c) Ta thấy : 1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)
=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2
Bài2: a. 3500= (35).100=243100
7300= (73).100= 147100. Mà 243> 147 => 243100> 147100. Vây 3500> 7300
b.
2a.
3^500=(3^5)^100=243^100
7^300=(7^3)^100=343^100
Ta thấy :243^100<343^100 suy ra:3^500<7^300
\(\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........-\frac{1}{100}=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{100^2}< 1\)