K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2019

\(F_1\left(-2\sqrt{2};0\right);F_2\left(2\sqrt{2};0\right)\)

Gọi \(M\left(x;y\right)\Rightarrow\frac{x^2}{9}+\frac{y^2}{1}=1\) (1) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{F_1M}=\left(x+2\sqrt{2};y\right)\\\overrightarrow{F_2M}=\left(x-2\sqrt{2};y\right)\end{matrix}\right.\)

Do \(\widehat{F_1MF_2}=90^0\Rightarrow F_1M\perp F_2M\Rightarrow\overrightarrow{F_1M}.\overrightarrow{F_2M}=0\)

\(\Rightarrow\left(x-2\sqrt{2}\right)\left(x+2\sqrt{2}\right)+y^2=0\Rightarrow x^2+y^2=8\) (2)

Từ (1) và (2) có hệ: \(\left\{{}\begin{matrix}\frac{1}{9}x^2+y^2=1\\x^2+y^2=8\end{matrix}\right.\) \(\Rightarrow x^2=\frac{63}{8}\Rightarrow x=\frac{3\sqrt{14}}{4}\)

Câu 2:

\(F_1F_2=24=2c\Rightarrow c=12\)

\(2a=26\Rightarrow a=13\)

\(\Rightarrow b^2=a^2-c^2=13^2-12^2=25\Rightarrow b=5\)

Vậy xưởng cao 5m

NV
19 tháng 6 2020

\(a=2;b=1\Rightarrow c=\sqrt{3}\)

\(\Rightarrow F_1F_2=2c=2\sqrt{3}\)

\(MF_1\perp MF_2\Rightarrow\Delta MF_1F_2\) vuông tại M

\(\Rightarrow MF_1^2+MF_2^2=F_1F_2^2=12\) (Pitago)

Ta có: \(\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1+MF_2=2a=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\\left(MF_1+MF_2\right)^2=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1^2+MF_2^2+2MF_1MF_2=16\end{matrix}\right.\)

\(\Rightarrow MF_1.MF_2=2\)

\(\Rightarrow S_{MF_1F_2}=\frac{1}{2}MF_1.MF_2=1\)

12 tháng 4 2016

Gọi R là bán kính của đường tròn (C)

(C) và Ctiếp xúc ngoài với nhau, cho ta:

MF1 = R1+ R  (1)

(C) và Ctiếp xúc ngoài với nhau, cho ta:

MF2 = R2 – R  (2)

Từ (1) VÀ (2) ta được 

MF1  +   MF2 = R1+ R2= R không đổi

Điểm M có tổng  các khoảng cách MF1  +   MF2 đến hai điểm cố định Fvà F2   bằng một độ dài không đổi R1+ R2

Vậy tập hợp điểm M là đường elip, có các tiêu điểm Fvà F2   và có tiêu cự

F1 .F2 = R1+ R2

Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0

hay m<>1

Phương trình hoành độ giao điểm là:

\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)

\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)

\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)

\(=4m^2-32m+64-4m^2+24m-20\)

\(=-8m+44\)

Để phương trình có hai nghiệm phân biệt thì -8m+44>0

=>-8m>-44

hay m<11/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)

\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)

\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)

\(\Leftrightarrow4m^2-8m+4-8m-44=0\)

\(\Leftrightarrow4m^2-16m-40=0\)

\(\Leftrightarrow m^2-4m-10=0\)

\(\Leftrightarrow\left(m-2\right)^2=14\)

hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)