K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2020

\(a=2;b=1\Rightarrow c=\sqrt{3}\)

\(\Rightarrow F_1F_2=2c=2\sqrt{3}\)

\(MF_1\perp MF_2\Rightarrow\Delta MF_1F_2\) vuông tại M

\(\Rightarrow MF_1^2+MF_2^2=F_1F_2^2=12\) (Pitago)

Ta có: \(\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1+MF_2=2a=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\\left(MF_1+MF_2\right)^2=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1^2+MF_2^2+2MF_1MF_2=16\end{matrix}\right.\)

\(\Rightarrow MF_1.MF_2=2\)

\(\Rightarrow S_{MF_1F_2}=\frac{1}{2}MF_1.MF_2=1\)

14 tháng 7 2017

Cho Elip (E) nha m.n

mọi người giúp giải mấy bài sau với ạ ! cám ơn trước. 1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\) 2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành...
Đọc tiếp

mọi người giúp giải mấy bài sau với ạ !
cám ơn trước.

1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\)

2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành lần lượt là B1,B2. Chứng minh: OB1.OB2=1

3. Cho parabol (P) có pt y=x2-3x+1 và đường thẳng d: y=(2m+1)x+2 và điểm M(3;3). Tìm m để d cắt (P) tại 2 điểm pb A, B sao cho tam giác MAB vuông cân tại M.

4. Cho hàm số f(x) = ax2+bx+c, biết rằng đồ thị hàm số f(x) cắt trục hoành tại 2 điểm pb thuộc đoàn [0;1]. Tìm giá trị lớ nhất và nhỏ nhất của biểu thức \(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)

5. Cho hàm số bậc hai f(x) = ax2+bx+c (a khác 0).C/m : nếu f(x) \(\ge\) 0 với mọi x \(\in\)R thì 4a + c \(\ge\) 2b

0

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>-m=4

hay m=-4

b: PTHĐGĐ là:

\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Leftrightarrow x^2-4x+2m-2=0\)

\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)

\(=16-8m+8=-8m+24\)

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

hay m<3

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)

=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)

\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)

\(\Leftrightarrow m^2-6m-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)