Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đk để là phân số thì 2n +3 \(\ne\)0 hay n \(\ne\)-3/2
b, a nguyên tương đương với 2b +1 chia hết cho 2n +3 tách phân số ra ta đưowjc
\(1-\frac{2}{2n+3}\)=> 2n +3 thuộc ước của 2
2n+3 | 1 | 2 | -2 |
2n | -2 | -1 | -5 |
n | -1 | -0,5 | -5/2 |
còn trường hợp -1 ta có n =-2
VẬY VỚI N THUỘC { -1;-0,5;-5/2;-2} THÌ a nguyên
a. điều kiện của n để B là phân số là :
\(n-2\ne0\Leftrightarrow n\ne2\)
b. ta có \(B=\frac{n-7}{n-2}=1-\frac{5}{n-2}\) nguyên khi n-2 là ước của 5
hay \(n-2\in\left\{-5;-1;1;5\right\}\Leftrightarrow n\in\left\{-3;1;3;7\right\}\)
a.\(A=\dfrac{n-4}{n+1}=\dfrac{n+1-5}{n+1}=1-\dfrac{5}{n+1}\)
\(ĐK:n\ne0;n\ne4\)
b.Để A nguyên thì \(\dfrac{5}{n+1}\in Z\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
*n+1=1 => n=0
*n+1=-1 => n=-2
*n+1=5 => n=4
*n+1=-5 => n=-6
Vậy \(n=\left\{0;-2;4;-6\right\}\) thì A nguyên
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
a) Điều kiện: \(n-4\ne0\Leftrightarrow n\ne4\)
Vậy \(\hept{\begin{cases}n\ne4\\n\inℤ\end{cases}}\)thì A là phân số
b) Với \(n\inℤ\):Để \(A\inℤ\)
\(\Leftrightarrow n-4\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow n\in\left\{-3;3;7;11\right\}\)
Kết hợp ĐKXĐ .Vậy \(n\in\left\{-3;3;7;11\right\}\)thì \(A\inℤ\)
c)Với n=19 (thỏa mãn điều kiện) thì:
A=\(\frac{7}{19-4}=\frac{7}{15}\)
Với n=-17(thỏa mãn điều kiện) thì:
A=\(\frac{7}{-17-4}=\frac{7}{-21}=-\frac{1}{3}\)
a, Để A là phân số thì n-1\(\ne\) 0
=> n\(\ne\) 1
b, Có : \(A=\frac{4}{n-1}\)
Để A có giá trị nguyên => n-1 \(\in\) Ư(4) = {1;2;4;-1;-2;-4}
Ta có bảng sau
n-1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | 3 | 5 | 0 | -1 | -3 |
vậy để A là số nguyên thì n \(\in\) {2;3;5;0;-1;-3}
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
B = \(\dfrac{-8}{2n-1}\) (n \(\in\) Z)
a; Tìm điều kiện của số nguyên n để B là phân số
B là phân số khi và chỉ khi 2n - 1 \(\ne\) 0 ⇒ n ≠ \(\dfrac{1}{2}\)
Vậy B là phân số với mọi giá trị của n \(\in\) Z
b; Tìm số nguyên n để B nguyên
B = \(\dfrac{-8}{2n-1}\) \(\in\) Z ⇔ 8 ⋮ 2n - 1
2n - 1 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
Lập bảng ta có:
vì n thuộc z nên theo bảng trên ta có: n \(\in\){0; 1}
Kết luận với n \(\in\) {0; 1} thì biểu thức B =\(\dfrac{-8}{2n-1}\) là một só nguyên.
nhanh giúp mk với