K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 11 2019

\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)

\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)

\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)

\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)

\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)

\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

11 tháng 8 2015

\(B=5x^2+2y^2+4xy-2x+4y+2020\)

\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)

\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)

\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)

11 tháng 8 2015

=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015

=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]

=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015

giá trị nhỏ nhất là 2015

29 tháng 8 2019

\(a,A=2x^2+9y^2-6xy-6x-12y+2049\)

\(=x^2-6xy+9y^2+x^2-10x+25+4x-12y+2024\)

\(=\left(x-3y\right)^2+\left(x-5\right)^2+4\left(x-3y\right)+2024\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\)

\(A_{min}=2020\Leftrightarrow\hept{\begin{cases}\left(x-3y+2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x=5\end{cases}\Rightarrow5-3y+2=0}\)

\(\Rightarrow3y=7\Leftrightarrow y=\frac{7}{3}\)

Vậy \(A_{min}=2020\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

b tương tự nhé

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$


16 tháng 12 2019

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)

6 tháng 11 2019

\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+x^2-4x+2019\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\)

\(=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\x=2y-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\frac{3}{2}\end{matrix}\right.\)

Vậy...

7 tháng 11 2019

\(P=2x^2+4y^2-4xy-2x-4y+2019\)

\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\) ( Bước này mình làm hơi tắt , cái này bạn chỉ cần chú ý để tách ra thôi )

\(P=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)

Dấu '' = '' xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-2y=0\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)

Vậy Min \(P=2014\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)