K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+x^2-4x+2019\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\)

\(=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\x=2y-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\frac{3}{2}\end{matrix}\right.\)

Vậy...

7 tháng 11 2019

\(P=2x^2+4y^2-4xy-2x-4y+2019\)

\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\) ( Bước này mình làm hơi tắt , cái này bạn chỉ cần chú ý để tách ra thôi )

\(P=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)

Dấu '' = '' xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-2y=0\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)

Vậy Min \(P=2014\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)

16 tháng 12 2019

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)

NV
4 tháng 11 2019

\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)

\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)

\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)

\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)

\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)

\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)

20 tháng 4 2019

Nãy lộn nhé,em làm lại:

\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+x^2+8\)

\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)^2\right]+x^2+8\)

\(=\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\x+2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)

20 tháng 4 2019

Dạng này mình không quen cho lắm nên không chắc nha!

\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+8\)

\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)\right]+8\)

\(=\left(x+2y+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi \(\left(x+2y+1\right)^2=0\Leftrightarrow2y+1=-x\)

Mà \(\left(x+2y+1\right)^2=x^2+2x\left(2y+1\right)+\left(2y+1\right)\)

\(=x^2-2x^2-x=-x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Thay vào D loại x = -1 suy ra x = 0 tức là y = -1/2

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

23 tháng 3 2020

Ta có: A = 2x2 + 4y2 - 4xy - 4x - 4y + 15

= (x2 - 4xy + 4y2) + 2(x - 2y) + 1 + (x2 - 6x + 9) + 5

= (x - 2y)2 + 2(x - 2y) + 1 + (x - 3)2 + 5

= (x - 2y + 1)2 + (x - 3)2 + 5 \(\ge\)5 \(\forall\)x; y

Daaus "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2y+1=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=\frac{x+1}{2}\\x=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

Vậy MinA = 5 khi x = 3 và y = 2

23 tháng 3 2020

\(=2\left(x^2-2xy+y^2-2x+2y+1\right)+2\left(y^2-4y+4\right)+5\)

\(=\left(y-x+1\right)^2+2\left(y-2\right)^2+5\ge5\)

Vậy MIN=5 khi \(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

31 tháng 7 2018

\(D=2x^2+4y^2+4xy+2x+4y+9=x^2+4xy+4y^2+2x+4y+1+x^2+8=\left(x+2y\right)^2+2\left(x+2y\right)+1+x^2+8=\left(x+2y+1\right)^2+x^2+8\)

Do : \(\left\{{}\begin{matrix}\left(x+2y+1\right)^2\ge0\forall xy\\x^2\ge0\forall x\end{matrix}\right.\)\(\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Leftrightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

\(\Rightarrow D_{Min}=8."="\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\)

Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!

7 tháng 6 2017

\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

khi \(x=\frac{1}{3},y=\frac{1}{6}\)

30 tháng 10 2017

2x2+4y2+4xy+2x+4y+9

=x2 +4y2+4xy+1+2x+4y+x2+9

=(x+2y)2+2(x+2y)+1+x2+9

=(x+2y+1)2+x2+9

có (x+2y+1)2≥0 với mọi x,y

x2≥0 với mọi x

⇒(x+2y+1)2+x2 ≥0với mọi x,y

⇒(x+2y+1)2+x2+9≥9với mọi x,y

30 tháng 10 2017

ta có :

A = 2x2+4y2+4xy+2x+4y+9 = 2x2+2x+4y2+4y+4xy+9

= 2x(x+1)+4y(y+1)+4xy+9

= 2x(x+1)+4y(y+x+1)+9

= (x+1)(2x+4y2)+9

=> A lớn hơn hoặc bằng 9

=> min A là 9