Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(3x^{3y}-\frac{1}{2}x^2+\frac{1}{5}xy\right).6xy^3\)
\(=18x^{3y+1}y^3-3x^3y^3+\frac{6}{5}x^2y^4\)
\(=y^3.\left(18x^{3y+1}-3x^3+\frac{6}{5}x^2y\right)\)
b)\(\frac{2}{3}x^{2y}.\left(3xy-x^2+y\right)\)
\(=2x^{2y+1}y-\frac{2}{3}x^{2y+x}+\frac{2}{3}x^{2y}y\)
c)(xy-1)(xy+5)
=x2y2+5xy-xy-5
=x2y2+4xy-5
d)Mk ko hiểu sao hai lần mũ liền
Bất phương trình bậc nhất 2 ẩn :
\(2x+3y>0\Rightarrow Câu\) \(C\)
\(x-2y\le1\Rightarrow Câu\) \(f\)
\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)
\(\Leftrightarrow4x-4+5y-15-2x+9>0\)
\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)
\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)
\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)
\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)
\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)
\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)
\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)
Xét VT của (1):
\(3VT\)
\(=\sqrt{5x^2+2xy+2y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{2x^2+2xy+5y^2}.\sqrt{2^2+2^2+1^2}\)
\(=\sqrt{\left(x+y\right)^2+4x^2+y^2}.\sqrt{2^2+2^2+1^2}+\sqrt{\left(x+y\right)^2+x^2+4y^2}.\sqrt{2^2+2^2+1^2}\)
\(\ge\left[2\left(x+y\right)+4x+y\right]+\left[2\left(x+y\right)+x+4y\right]=9x+9y\)
\(\Rightarrow VT\ge3x+3y=VT\)
Đẳng thức xảy ra \(\Leftrightarrow...\Leftrightarrow x=y\)
Sau đó thay \(y=x\) vào pt (2) ta được:
\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)
\(\Leftrightarrow\left(2x^2-\sqrt{3x+1}\right)+\left(x-5-2\sqrt[3]{19x+8}\right)=0\)
\(\Leftrightarrow\dfrac{4x^2-3x-1}{2x^2+\sqrt{3x+1}}+\dfrac{\left(x+5\right)^3-8\left(19x+8\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4x+1\right)}{2x^2+\sqrt{3x+1}}+\dfrac{ \left(x-1\right)\left(x^2+16x-61\right)}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left[\dfrac{4x+1}{2x^2+\sqrt{3x+1}}+\dfrac{x^2+16x-61}{\left(x-5\right)^2+2\left(x-5\right)\sqrt[3]{19x+8}+4\sqrt[3]{\left(19x+8\right)^2}}\right]=0\)
\(\Leftrightarrow x=1\Rightarrow y=1\)
Điều kiện : \(x>-\frac{1}{3};y>-\frac{1}{3}\). Lấy hai phương trình của hệ trừ nhau :
\(3x^2+4x+2\ln\left(3x+1\right)-3y^2+4y+2\ln\left(3y+1\right)=2y-2x\left(1\right)\)
\(\Leftrightarrow3x^2+6+2\ln\left(3x+1\right)=3y^2+6y+2\ln\left(3y+1\right)\left(2\right)\)
Xét hàm số \(f\left(t\right)=3t^2+6t+2\ln\left(3t+1\right)\) trên khoảng \(\left(-\frac{1}{3};+\infty\right)\)
Ta có : \(f'\left(t\right)=6t+6+\frac{6}{3t+1}>0\), với mọi \(t\in\left(-\frac{1}{3};+\infty\right)\)
Vậy hàm số \(f\left(t\right)\) đồng biên trên khoảng \(\left(-\frac{1}{3};+\infty\right)\). Từ đó (2) xảy ra khi và chỉ khi x = y. Thay vào hệ phương trình đã cho, ta được :
\(3x^2+4x+2\ln\left(3x+1\right)=2x\)
\(\Leftrightarrow3x^2+2x+2\ln\left(3x+1\right)=0\) (3)
Dễ thấy x = 0 thỏa mãn (3)
Xét hàm số \(g\left(x\right)=3x^2+2x+2\ln\left(3x+1\right)\)
3.
ĐKXĐ: ...
Trừ vế cho vế ta được:
\(2x-2y=y-x+\sqrt{y-2}-\sqrt{x-2}\)
\(\Leftrightarrow3\left(x-y\right)+\sqrt{x-2}-\sqrt{y-2}=0\)
\(\Leftrightarrow3\left(x-y\right)+\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(3+\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)
\(\Leftrightarrow x=y\) (ngoặc to luôn dương)
Thay vào pt đầu:
\(2x-2=x+\sqrt{x-2}\)
\(\Leftrightarrow x-2=\sqrt{x-2}\Rightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=3\end{matrix}\right.\)
\(=\dfrac{4}{9}x^6y^4\cdot\dfrac{1}{2}x^2y^5=\dfrac{2}{9}x^8y^9\)