\(P=a^2b+b^2c+c^2a\)

\(a+b+c=3;a,b,c\ge0\)

GTNN,G...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

\(P\ge0\)

dấu "=" xảy ra khi \(a=3;b=0;c=0\) và các hoán vị 

ko mất tính tổng quát, giả sử b nằm giữa a và c => \(c\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\)\(P\le a^2b+bc^2+abc\le b\left(c+a\right)^2\le\frac{1}{2}\left(\frac{2b+c+a+c+a}{3}\right)^3=4\)

dấu "=" xảy ra khi \(a=2;b=1;c=0\) và các hoán vị

18 tháng 11 2019

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

18 tháng 11 2019

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

2 tháng 12 2016

Đặt cái ban đầu là A

Dầu tiên ta có

\(\text{(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b)}\)

\(=4\left(a+b+c+d\right)^2\)

Ta có: \(\frac{a-b}{a+2b+c}+\frac{1}{2}=\frac{1}{2}.\frac{3a+c}{a+2b+c}=\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

Tương tự ta có

\(\frac{b-c}{b+2c+d}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}\)

\(\frac{c-d}{c+2d+a}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}\)

\(\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}\)

Cộng vế theo vế ta được

\(\frac{a-b}{a+2b+c}+\frac{1}{2}+\frac{b-c}{b+2c+d}+\frac{1}{2}+\frac{c-d}{c+2d+a}+\frac{1}{2}+\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}+\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}+\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}+\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

\(\ge\frac{1}{2}.\frac{\left(3a+c+3b+d+3c+a+3d+b\right)^2}{\left(3a+c\right)\left(a+2b+c\right)+\left(3b+d\right)\left(b+2c+d\right)+\left(3c+a\right)\left(c+2d+a\right)+\left(3d+b\right)\left(d+2a+b\right)}\)

\(=\frac{1}{2}.\frac{16\left(a+b+c+d\right)^2}{4\left(a+b+c+d\right)^2}=2\)

\(\Rightarrow A+2\ge2\)

\(\Leftrightarrow A\ge0\)

4 tháng 12 2016

=4(a+b+c+d)2

Ta có: a−ba+2b+c +12 =12 .3a+ca+2b+c =12 .(3a+c)2(3a+c)(a+2b+c) 

Tương tự ta có

b−cb+2c+d +12 =12 .(3b+d)2(3b+d)(b+2c+d) 

c−dc+2d+a +12 =12 .(3c+a)2(3c+a)(c+2d+a) 

d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) 

Cộng vế theo vế ta được

a−ba+2b+c +12 +b−cb+2c+d +12 +c−dc+2d+a +12 +d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) +12 .(3c+a)2(3c+a)(c+2d+a) +12 .(3b+d)2(3b+d)(b+2c+d) +12 .(3a+c)2(3a+c)(a+2b+c) 

≥12 .(3a+c+3b+d+3c+a+3d+b)2(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b) 

=12 .16(a+b+c+d)24(a+b+c+d)2 =2

⇒A+2≥2

NV
5 tháng 7 2020

Đặt \(\left\{{}\begin{matrix}a+b+c=p\Rightarrow p=2\\ab+bc+ca=q\\abc=r\end{matrix}\right.\) \(\Rightarrow0\le q\le\frac{1}{3}p^2=\frac{4}{3}\)

Ta cần chứng minh: \(q^2-2pr-2r\le1\Leftrightarrow q^2-6r\le1\)

TH1: \(0\le q< 1\Rightarrow q^2-6r\le q^2< 1\) \(\Rightarrow\) BĐT đúng

TH2: \(1\le q\le\frac{4}{3}\)

Theo Schur: \(r\ge\frac{p\left(4q-p^2\right)}{9}=\frac{8\left(q-1\right)}{9}\Rightarrow q^2-6r\le q^2-\frac{16}{3}\left(q-1\right)\)

Do đó ta chỉ cần chứng minh: \(q^2-\frac{16}{3}\left(q-1\right)\le1\)

\(\Leftrightarrow3q^2-16q+13\le0\)

\(\Leftrightarrow\left(q-1\right)\left(3q-13\right)\le0\) (luôn đúng \(\forall x\in\left[1;\frac{4}{3}\right]\))

BĐT được chứng minh hoàn tất

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

6 tháng 7 2020

Ta chứng minh bất đẳng thức mạnh hơn: \(a^2b^2+b^2c^2+c^2a^2+\frac{11}{8}abc\le1\)

Thật vậy: \(VP-VT=\frac{1}{32}\sum\left(a-b\right)^2\left(a+b-c\right)^2+\frac{5}{16}\sum ab\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi $a=b=1,c=0$ và các hoán vị.

NV
13 tháng 7 2020

\(S\le\frac{a}{2a+2b+2c}+\frac{b}{2a+2b+2c}+\frac{c}{2a+2b+2c}=\frac{1}{2}\)

\(S_{max}=\frac{1}{2}\) khi \(a=b=c=1\)

29 tháng 4 2017

545454785

564657431

68567545

4654856

865449466

8 tháng 12 2018

đk gì nữa ko bạn

9 tháng 12 2018

\(a+b+c\ge\dfrac{1}{3}\)hình như là thêm đk này nữa