K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Đặt cái ban đầu là A

Dầu tiên ta có

\(\text{(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b)}\)

\(=4\left(a+b+c+d\right)^2\)

Ta có: \(\frac{a-b}{a+2b+c}+\frac{1}{2}=\frac{1}{2}.\frac{3a+c}{a+2b+c}=\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

Tương tự ta có

\(\frac{b-c}{b+2c+d}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}\)

\(\frac{c-d}{c+2d+a}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}\)

\(\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}\)

Cộng vế theo vế ta được

\(\frac{a-b}{a+2b+c}+\frac{1}{2}+\frac{b-c}{b+2c+d}+\frac{1}{2}+\frac{c-d}{c+2d+a}+\frac{1}{2}+\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}+\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}+\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}+\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

\(\ge\frac{1}{2}.\frac{\left(3a+c+3b+d+3c+a+3d+b\right)^2}{\left(3a+c\right)\left(a+2b+c\right)+\left(3b+d\right)\left(b+2c+d\right)+\left(3c+a\right)\left(c+2d+a\right)+\left(3d+b\right)\left(d+2a+b\right)}\)

\(=\frac{1}{2}.\frac{16\left(a+b+c+d\right)^2}{4\left(a+b+c+d\right)^2}=2\)

\(\Rightarrow A+2\ge2\)

\(\Leftrightarrow A\ge0\)

4 tháng 12 2016

=4(a+b+c+d)2

Ta có: a−ba+2b+c +12 =12 .3a+ca+2b+c =12 .(3a+c)2(3a+c)(a+2b+c) 

Tương tự ta có

b−cb+2c+d +12 =12 .(3b+d)2(3b+d)(b+2c+d) 

c−dc+2d+a +12 =12 .(3c+a)2(3c+a)(c+2d+a) 

d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) 

Cộng vế theo vế ta được

a−ba+2b+c +12 +b−cb+2c+d +12 +c−dc+2d+a +12 +d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) +12 .(3c+a)2(3c+a)(c+2d+a) +12 .(3b+d)2(3b+d)(b+2c+d) +12 .(3a+c)2(3a+c)(a+2b+c) 

≥12 .(3a+c+3b+d+3c+a+3d+b)2(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b) 

=12 .16(a+b+c+d)24(a+b+c+d)2 =2

⇒A+2≥2

2 tháng 8 2019

thôi ko cần nx đâu,mình làm được rồi,cảm ơn các bạn nha!!!

dễ thôi

ta có:

\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c};\frac{b}{1+c^2d}=b-\frac{bc^2d}{1+c^2d};\frac{c}{1+d^2a}=c-\frac{cd^2a}{1+d^2a};\frac{d}{1+a^2b}=d-\frac{da^2b}{1+a^2b}\)

áp dụng cauchy ta có:

\(b^2c+1\ge2b\sqrt{c};c^2d+1\ge2c\sqrt{d};d^2a+1\ge2d\sqrt{a};a^2b+1\ge2a\sqrt{b}\)

\(=4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\)

theo ông cauchy thì 

\(ab\sqrt{c}\le\frac{ab\left(c+1\right)}{2};bc\sqrt{d}\le\frac{bc\left(d+1\right)}{2};cd\sqrt{a}\le\frac{cd\left(a+1\right)}{2};da\sqrt{b}\le\frac{da\left(b+1\right)}{2}\)

\(\Rightarrow4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\ge4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\)

vẫn là ông cauchy nói là \(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)

\(ab+bc+cd+da=\left(b+d\right)\left(a+c\right)\le\frac{\left(a+b+c+d\right)^2}{4}=4\)

\(\Rightarrow4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\ge4-\frac{4+4}{4}=2\)

\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge2\left(Q.E.D\right)\)

dấu bằng xảy ra khi a=b=c=d=1

\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge\left(a+b+c+d\right)-\frac{ab^2c}{2b\sqrt{c}}-\frac{bc^2d}{2c\sqrt{d}}-\frac{cd^2a}{2d\sqrt{a}}-\frac{da^2b}{2a\sqrt{b}}\)

 Kiệt đừng ghi dòng cuối nhé,ko bít nó ở mô ra

11 tháng 11 2018

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

11 tháng 11 2018

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

14 tháng 9 2017

Giải:

Áp dụng BĐT AM - GM ta có:

\(\dfrac{a}{1+b^2c}=a-\dfrac{ab^2c}{1+b^2c}\ge a-\dfrac{ab^2c}{2b\sqrt{c}}\) \(=a-\dfrac{ab\sqrt{c}}{2}\)

\(\ge a-\dfrac{b\sqrt{a.ac}}{2}\ge a-\dfrac{b\left(a+ac\right)}{4}\) \(\ge a-\dfrac{1}{4}\left(ab+abc\right)\)

\(\Rightarrow\dfrac{a}{1+b^2c}\ge a-\dfrac{1}{4}\left(ab+abc\right).\) Tượng tự ta cũng có:

\(\dfrac{b}{1+c^2d}\ge b-\dfrac{1}{4}\left(bc+bcd\right);\dfrac{c}{1+d^2a}\ge c-\dfrac{1}{4}\left(cd+cda\right);\dfrac{d}{1+a^2b}\ge d-\dfrac{1}{4}\left(da+dab\right)\)

Cộng theo vế 4 BĐT trên ta được:

\(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}\)

\(\ge a+b+c+d-\dfrac{1}{4}\)\(\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)

Lại áp dụng BĐT AM - GM ta có:

\(ab+bc+cd+da\) \(\le\dfrac{1}{4}\left(a+b+c+d\right)^2=4\)

\(abc+bcd+cda+dab\) \(\le\dfrac{1}{16}\left(a+b+c+d\right)^3=4\)

Do đó:

\(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}\)

\(\ge a+b+c+d-2=2\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=d=1\)

3 tháng 1 2018

okie bae Quang Duy

30 tháng 5 2020

đây nha

2 tháng 7 2020

đâu bạn