K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

\(P\ge0\)

dấu "=" xảy ra khi \(a=3;b=0;c=0\) và các hoán vị 

ko mất tính tổng quát, giả sử b nằm giữa a và c => \(c\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\)\(P\le a^2b+bc^2+abc\le b\left(c+a\right)^2\le\frac{1}{2}\left(\frac{2b+c+a+c+a}{3}\right)^3=4\)

dấu "=" xảy ra khi \(a=2;b=1;c=0\) và các hoán vị

22 tháng 5 2015

chịu nhằng quá giải ko ra

11 tháng 6 2020

Sửa đề: a + 2b + 3c = 1

Xét: \(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)

có: \(\Delta_1'=4\left(2a+1\right)^2-4\left(4a^2+192abc+1\right)=16a-768abc=16a\left(1-48bc\right)\)

Xét \(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)

có: \(\Delta_1'=4\left(2b+1\right)^2-4\left(4b^2+96abc+1\right)=16b-384abc=16b\left(1-24ac\right)\)

Ta lại xét: \(\left(1-48bc\right)+\left(1-24ac\right)=2-24c\left(a+2b\right)\)

\(=2-24c\left(1-3c\right)=2\left(36c^2-12c+1\right)=2\left(6c-1\right)^2\ge0\)với mọi c 

=> Tồn tại ít nhất 1 trong 2 số: \(\left(1-48bc\right);\left(1-24ac\right)\) không âm 

Vì a và b không âm 

=> Tồn tại ít nhất 1 trong 2 số : \(16a\left(1-48bc\right);16b\left(1-24ac\right)\)không âm 

=> Tồn tại it nhất 1 trong 2 \(\Delta_1';\Delta_2'\)không âm 

=> Có ít nhất 1 trong 2 phương trình trên có nghiệm.

NV
23 tháng 4 2021

\(2a\ge ab+4\ge2\sqrt{4ab}=4\sqrt{ab}\Rightarrow\sqrt{\dfrac{a}{b}}\ge2\Rightarrow\dfrac{a}{b}\ge4\)

\(T=\dfrac{a}{b}+\dfrac{2b}{a}=\dfrac{a}{8b}+\dfrac{2b}{a}+\dfrac{7}{8}.\dfrac{a}{b}\ge2\sqrt{\dfrac{2ab}{8ab}}+\dfrac{7}{8}.4=\dfrac{9}{2}\)

\(T_{min}=\dfrac{9}{2}\) khi \(\left(a;b\right)=\left(4;1\right)\)

8 tháng 12 2018

đk gì nữa ko bạn

9 tháng 12 2018

\(a+b+c\ge\dfrac{1}{3}\)hình như là thêm đk này nữa

3 tháng 3 2020

Ta có :

\(\sqrt{4a^2+12}=\sqrt{4a^2+4ab+2c\left(a+b\right)}=\sqrt{\left(2a+c\right)\left(2a+2b\right)}\)

\(\le\frac{4a+2b+c}{2}\)

Tương tự : \(\sqrt{4b^2+12}\le\frac{4b+2a+c}{2}\)\(\sqrt{c^2+12}=\sqrt{\left(2a+c\right)\left(2b+c\right)}\le\frac{2a+2b+2c}{2}\)

\(\Rightarrow\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}\le\frac{4a+2b+c+4b+2a+c+2a+2b+2c}{2}\)

\(=4a+4b+2c\)

\(\Rightarrow\frac{2a+2b+c}{\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}}\ge\frac{2a+2b+c}{4a+4b+2c}=\frac{1}{2}\)

Dấu "=" xảy ra khi a = b = 1 ; c = 2