K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 1+1-\frac{1}{50}< 1+1=2\)

\(=>A< 2\)

26 tháng 4 2017

a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

b) Ta thấy : 21 = 3 .7        ( 3 ; 7 ) = 1

để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7

Ta có :

B = 21 + 22 + 23 + 24 + ... + 230

B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )

B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )

B = 2 . 3 + 23 . 3 + ... + 229 . 3

B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )

Lại có : B = 21 + 22 + 23 + 24 + ... + 230 

B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )

B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )

B = 2 . 7 + 24 . 7 + ... + 228 . 7

B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)21

4 tháng 3 2018

oh my goh

5 tháng 5 2016

Ta có :

1/2^ 2<1/1.2

1/3 ^2<1/2.3

1/4^ 2<1/3.4

.........................

1/50^ 2<1/49.50 

=>A<1/1 2+1/1.2+1/2.3+..+1/49.50

A<1+1-1/2+1/2=1/3+...+1/49-1/50 A<2-1/50<2(đpcm)

5 tháng 5 2016

Ta có 1/22<1/1.2

1/32<1/2.3

1/42<1/3.4

.........................

1/502<1/49.50

=>A<1/12+1/1.2+1/2.3+..+1/49.50

A<1+1-1/2+1/2=1/3+...+1/49-1/50

A<2-1/50<2(đpcm)

13 tháng 4 2018

\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}.\)

\(\Rightarrow A< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{49}+\frac{1}{50}\)

\(A< 1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\left(đpcm\right)\)

10 tháng 4 2017

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ...................

              \(\frac{1}{50^2}< \frac{1}{49.50}\)

Nên\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{49.50}\)

<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}\)

<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1-\frac{1}{50}=\frac{49}{50}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1\) (đpcm)

10 tháng 4 2017

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(< 1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\)