Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
b) Ta thấy : 21 = 3 .7 ( 3 ; 7 ) = 1
để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7
Ta có :
B = 21 + 22 + 23 + 24 + ... + 230
B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )
B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )
B = 2 . 3 + 23 . 3 + ... + 229 . 3
B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )
Lại có : B = 21 + 22 + 23 + 24 + ... + 230
B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )
B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )
B = 2 . 7 + 24 . 7 + ... + 228 . 7
B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)B \(⋮\)21
Ta có :
1/2^ 2<1/1.2
1/3 ^2<1/2.3
1/4^ 2<1/3.4
.........................
1/50^ 2<1/49.50
=>A<1/1 2+1/1.2+1/2.3+..+1/49.50
A<1+1-1/2+1/2=1/3+...+1/49-1/50 A<2-1/50<2(đpcm)
Ta có 1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
.........................
1/502<1/49.50
=>A<1/12+1/1.2+1/2.3+..+1/49.50
A<1+1-1/2+1/2=1/3+...+1/49-1/50
A<2-1/50<2(đpcm)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{50^2}< \frac{1}{49.50}\)
Nên\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{49.50}\)
<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}\)
<=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1-\frac{1}{50}=\frac{49}{50}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}< 1\) (đpcm)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(< 1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 1+1-\frac{1}{50}< 1+1=2\)
\(=>A< 2\)
A = 1/2² + 1/3³ + ... + 1/2008² < 1
\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2008.2008}\)
< \(\frac{1}{1.2}+\:\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
Suy ra A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
Suy ra A < 1 - 1/2008
Suy ra A < 2007/2008
Mà 2007/2008 < 1
\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}.\)
\(\Rightarrow A< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{49}+\frac{1}{50}\)
\(A< 1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)