Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cạnh AD lấy điểm E sao cho AE=AB .
Xét ΔABCΔ���và ΔAECΔ���có :
AB=AE��=��(GT)
ˆA1=ˆA2�^1=�^2(vì AC là tia phân giác góc BAD )
AC:��:Cạnh chung
Do đó : tam giác ABC = tam giác AEC (c-g-c)
⇒BC=CE⇒��=��( cặp cạnh tương ứng ) (1)
ˆB1=ˆE1�^1=�^1( cặp góc tương ứng )
Vì tứ giác ABCD có :
ˆA+ˆB+ˆC+ˆC=360o�^+�^+�^+�^=360�( tính chất tứ giác lồi )
Mà ˆA+ˆC=180o�^+�^=180�( GT)
⇒ˆB+ˆD=180o⇒�^+�^=180�
Mà ˆB1=ˆE1�^1=�^1
ˆE2+ˆE1=180o�^2+�^1=180�
⇒ˆE2=ˆD⇒�^2=�^
⇒ΔCDE⇒Δ���cân tại C .
⇒DC=CE⇒��=��(2)
Từ (1) và (2)
\hept{BC=CEDC=CE\hept{��=����=��
⇒DC=BC(dpcm)
Ta có AB = BC (gt)
Suy ra: ∆ABC cân.
Nên A1ˆ=C1ˆA1^=C1^ (1)
Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)
nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)
Vẽ hình :
B C A I