Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lưu ý: sin2 a + cos2 a = 1
a. Tách ra dễ dàng nhận được biểu thức = 2(sin2 a + cos2 a) = 2 => không phụ thuộc vào a.
b. sin6 a + cos6 a = (sin2 a + cos2 a)(sin4 a - cos2 a.sin2 a + cos4 a) = sin4 a - cos2 a.sin2 a + cos4 a
=> Biểu thức = sin4 a - sin2 a.cos2 a + cos4 a + 3.sin2 a*cos2 a = sin4 a + 2.sin2 a.cos2 a + cos4 a = (sin2 a + cos2 a)2 = 1
a) = sina2 +2sinacosa +cosa2 + sina2 -2sinacosa + cosa2 = 1+1 = 2 ( k phụ thuộc vào a)
Hè năm ngoái tôi bị mắc dạng này ^^ Và tôi tự mò ra .... vài thứ...
(sina^2)^3+sosa^2)^3 = (sina^2 +cosa^2)(sina^4 -sina^2cosa^2 + cos^4 ) Chú ý sina^2 +cosa^2=1
= > B=(sina^4 -sina^2cosa^2 + cos^4 )+ 3 sina^2cosa^2 = ( sina^2 + cosa^2)^2 = 1^2 = 1 ^^
\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)
\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
Vậy B = 1
áp dụng công thức sin2a+cos2a=1
A= sin2a +cos2a-2sina.cosa-sin2a-cos2a+2sina.cosa = 0
B=(sỉn2a+cos2a)2 =12 =1
C= cos2a(cos2a+sin2a)+ sin2a=cos2a+sin2a=1
D=sin2a(sin2p+cos2p)+cos2a=sin2a+cos2a=1
E= (sin2a+cos2a)(sin4a-sin2a.cos2a+cos4a)+3sin2a.cos2a
=sin4a+2sin2a.cos2a+ cos4a=(sin2a+cos2a)2=1
ta có : \(A=sin^6a+cos^6a+3sin^2a-cos^2a\)
\(=\left(sin^2a\right)^3+\left(cos^3a\right)^2+3sin^2a-cos^2a\)
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a-cos^2a\)
\(=1-3sin^2a.cos^2a+3sin^2a-cos^2a\)
\(=3sin^2a-3sin^2a.cos^2a+1-cos^2a\)
\(=3sin^2a\left(1-cos^2a\right)+\left(1-cos^2a\right)\) \(=\left(3sin^2a+1\right)\left(1-cos^2a\right)\)
\(=\left(3sin^2a+1\right)\left(sin^2a\right)=3sin^4a+sin^2a\)
a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))
\(\Rightarrow\left(đpcm\right)\)
\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)
a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2
Tớ không biết ghi anpha nên ..
A= \(\left(\sin^2a\right)^3+\left(cos^2a\right)^3+3sin^2acos^2a\)
=\(\left(sin^2a+cos^2a\right)\left(sin^4a-cos^2asin^2a+cos^4a\right)+3sin^2acos^2a\)
\(sin^4a+2sin^2acos^2a+cos^4a=\left(sin^2+cos^2\right)^2=1^2=1\)
b: \(=\left(\cos^2\alpha+\sin^2\alpha\right)^3-3\cos^2\alpha\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)
=1
\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)
\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a\)
\(=2cos^2a\)
\(cos^6a+sin^6a+3sin^2a.cos^2a\)
\(=\left(cos^2a+sin^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a.1+3sin^2a.cos^2a\)
\(=1\)