K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2023

Em cần làm gì với các đa thức này vậy em

5 tháng 7 2017

a) 9x2+30x+25=32x2+2.3.5x+52=(3x+5)2

b)12/5x2y2-9x4-4/25y4=-(9x4-12/5x2y2+4/25y4)=-(3x-2/5y)2

c)a2y2+b2x22axby=(ax-by)2

d)64x2-(8a+b)2=(8x-8a-b)(8x+8a+b)

12 tháng 7 2018

a, bằng cách tìm nhân tử chung

1,\(x^2-3x\)

=x.(\(\left(x-3\right)\)

2,\(15x^2-6x\)

=3x.(5x-2)

3,\(4x\left(x-y\right)\)\(+2y\left(x-y\right)\)

=(x-y).(4x+2y)

=2(x-y).(x+y)

=2(\(x^2-y^2\left(\right)\)

12 tháng 7 2018

b, dùng hằng đẳng thức

1,\(64x^2-25y^2\)

=\(\left(8x\right)^2-\left(5y\right)^2\)

=(8x-5y)(8x+5y)

2,\(9x^2-30x-25\)

=\(\left(3x-5\right)^2\)

3,

\(\dfrac{1}{4}x^2+2x+4\)

=\(\left(\dfrac{1}{2}x+2\right)^2\)

4,\(25a^2-2a+\dfrac{1}{25}\)

=(\(\left(5a-\dfrac{1}{5}\right)^2\)

10 tháng 9 2018

a) \(x^2-2x=24\)

\(\Rightarrow x^2-2x-24=0\)

\(\Rightarrow x^2-6x+4x-24=0\)

\(\Rightarrow x\left(x-6\right)+4\left(x-6\right)=0\)

\(\Rightarrow\left(x-6\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) \(\left(5-2x\right)^2-16=0\)

\(\Rightarrow\left(5-2x\right)^2-4^2=0\)

\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)

\(\Rightarrow\left(1-2x\right)\left(9-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\9-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)

c)Sửa đề

\(x^2-4x+4-9x^2+6x-1=0\)

\(\Rightarrow\left(x^2-4x+4\right)-\left(9x^2-6x+1\right)=0\)

\(\Rightarrow\left(x-2\right)^2-\left(3x-1\right)^2=0\)

\(\Rightarrow\left(x-2-3x+1\right)\left(x-2+3x-1\right)=0\)

\(\Rightarrow\left(-2x-1\right)\left(4x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-2x-1=0\\4x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2x=1\\4x=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)

d) \(2x^2+y^2+2xy-4x+4=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2=0\)

\(\left(x+y\right)^2\ge0\) với mọi x và y

\(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2\ge0\) với mọi x và y

\(\left(x+y\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)

17 tháng 8 2018

Bài 1:

a) \(25\left(x+2y\right)^2-16\left(2x-y\right)^2\)

\(=\left[5\left(x+2y\right)\right]^2-\left[4\left(2x-y\right)\right]^2\)

\(=\left[5\left(x+2y\right)-4\left(2x-y\right)\right]\left[5\left(x+2y\right)+4\left(2x-y\right)\right]\)

\(=\left(5x+10y-8x+4y\right)\left(5x+10y+8x-4y\right)\)

\(=\left(14y-3x\right)\left(13x+6y\right)\)

b) \(0,25\left(x-2y\right)^2-4\left(x+y\right)^2\)

\(=\left[\dfrac{1}{2}\left(x-2y\right)\right]^2-\left[2\left(x+y\right)\right]^2\)

\(=\left[\dfrac{1}{2}\left(x-2y\right)-2\left(x+y\right)\right]\left[\dfrac{1}{2}\left(x-2y\right)+2\left(x+y\right)\right]\)

\(=\left(\dfrac{1}{2}x-y-2x-2y\right)\left(\dfrac{1}{2}x-y+2x+2y\right)\)

\(=\left(-\dfrac{3}{2}x-3y\right)\left(\dfrac{5}{2}x+y\right)\)

\(=-3\left(\dfrac{1}{2}x+y\right)\left(\dfrac{5}{2}x+y\right)\)

c) \(\dfrac{4}{9}\left(x-3y\right)^2-0,04\left(x+y\right)^2\)

\(=\left[\dfrac{2}{3}\left(x-3y\right)\right]^2-\left[\dfrac{1}{5}\left(x+y\right)\right]^2\)

\(=\left[\dfrac{2}{3}\left(x-3y\right)-\dfrac{1}{5}\left(x+y\right)\right]\left[\dfrac{2}{3}\left(x-3y\right)+\dfrac{1}{5}\left(x+y\right)\right]\)

\(=\left(\dfrac{2}{3}x-2y-\dfrac{1}{5}x-\dfrac{1}{5}y\right)\left(\dfrac{2}{3}x-2y+\dfrac{1}{5}x+\dfrac{1}{5}y\right)\)

\(=\left(\dfrac{7}{15}x-\dfrac{11}{5}y\right)\left(\dfrac{13}{15}x-\dfrac{9}{5}y\right)\)

\(=\dfrac{1}{5}\left(\dfrac{7}{3}x-11y\right).\dfrac{1}{5}\left(\dfrac{13}{3}x-9y\right)\)

\(=\dfrac{1}{25}\left(\dfrac{7}{3}x-11y\right)\left(\dfrac{13}{3}x-9y\right)\)

d) \(-25x^2+30x-9\)

\(=-\left(25x^2-30x+9\right)\)

\(=-\left[\left(5x\right)^2-2.5x.3+3^2\right]\)

\(=-\left(5x-3\right)^2\)

Bài 2:

a) \(x^3y^2-x^2y^3-2x+2y\)

\(=x^2y^2\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2y^2-2\right)\)

Thay x = -1 và y = -2 vào ta được

\(=\left[-1-\left(-2\right)\right]\left[\left(-1\right)^2\left(-2\right)^2-2\right]\)

\(=1\left(4-2\right)\)

\(=2\)

b) \(5x^2-3x+3y-5y^2\)

\(=5\left(x^2-y^2\right)-3\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)

Thay x = 3 và y = 1 vào ta được

\(=5\left(3-1\right)\left(3+1\right)-3\left(3-1\right)\)

\(=5.2.4-3.2\)

\(=34\)

a: \(=\left(5x+10y\right)^2-\left(8x-4y\right)^2\)

\(=\left(5x+10y-8x+4y\right)\left(5x+10y+8x-4y\right)\)

\(=\left(-3x+14y\right)\left(13x+6y\right)\)

b: \(=\left(\dfrac{1}{2}x-y\right)^2-\left(2x+2y\right)^2\)

\(=\left(\dfrac{1}{2}x-y-2x-2y\right)\left(\dfrac{1}{2}x-y+2x+2y\right)\)

\(=\left(-\dfrac{3}{2}x-3y\right)\left(\dfrac{5}{2}x+y\right)\)

c: \(=\left(\dfrac{2}{3}x-2y\right)^2-\left(\dfrac{1}{5}x+\dfrac{1}{5}y\right)^2\)

\(=\left(\dfrac{2}{3}x-2y-\dfrac{1}{5}x-\dfrac{1}{5}y\right)\left(\dfrac{2}{3}x-2y+\dfrac{1}{5}x+\dfrac{1}{5}y\right)\)

\(=\left(\dfrac{7}{15}x-\dfrac{11}{5}y\right)\left(\dfrac{13}{15}x-\dfrac{9}{5}y\right)\)

Câu 1: 

a: \(=\left(5x+10y\right)^2-\left(8x-4y\right)^2\)

\(=\left(5x+10y-8x+4y\right)\left(5x+10y+8x-4y\right)\)

\(=\left(-3x+14y\right)\left(13x+6y\right)\)

b: \(=\left(0.5x-y\right)^2-\left(2x+2y\right)^2\)

\(=\left(0.5x-y-2x-2y\right)\left(0.5x-y+2x+2y\right)\)

\(=\left(-1.5y-3y\right)\left(2.5x+y\right)\)

c: \(=\left(\dfrac{2}{3}x-2y\right)^2-\left(0.2x+0.2y\right)^2\)

\(=\left(\dfrac{2}{3}x-2y-\dfrac{1}{5}x-\dfrac{1}{5}y\right)\left(\dfrac{2}{3}x+2y+\dfrac{1}{5}y+\dfrac{1}{5}x\right)\)

\(=\left(\dfrac{7}{15}x-\dfrac{11}{5}y\right)\left(\dfrac{13}{15}x+\dfrac{11}{5}y\right)\)

d: \(=-\left(5x-3\right)^2\)

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1

27 tháng 9 2017

\(a,2x^2-2xt-5x+5y\)

\(=\left(2x^2-5x\right)-\left(2xy-5y\right)\)

\(=x\left(2x-5\right)-y\left(2x-5\right)\)

\(=\left(2x-5\right)\left(x-y\right)\)

\(b,8x^2+4xy-2ax-ay\)

\(=\left(8x^2-2ax\right)+\left(4xy-ay\right)\)

\(=2x\left(4x-a\right)+y\left(4x-a\right)\)

\(=\left(4x-a\right)\left(2x+y\right)\)

\(c,x^3-4x^2+4x\)

\(=x^3-2x^2-2x^2+4x\)

\(=\left(x^3-2x^2\right)-\left(2x^2-4x\right)\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x-2\right)\)

\(=x\left(x-2\right)^2\)

\(d,2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-16\right)\)

\(=-\left[\left(x-y\right)^2-4^2\right]\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

\(e,x^2-y^2-2yz-z^2\)

\(=x^2-\left(y^2+2yz+z^2\right)\)

\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)