Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: \(\Leftrightarrow12x-60=7x-5\)
=>5x=55
=>x=11
b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)
=>(2x-3)(2x-2)(2x-4)=0
hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)
a) \(A=1+3+3^2+.....+3^{10}⋮4\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+.......+\left(3^9+3^{10}\right)\)
\(=\left(1+3\right)+\left(3^2\cdot1+3^2\cdot3\right)+.....+\left(3^9\cdot1+3^9\cdot3\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^9\left(1+3\right)\)
\(=4\cdot1+3^2\cdot4+.......+3^9\cdot4\)
\(=4\cdot\left(1+3^2+.....+3^9\right)⋮4\)
Do đó A \(⋮\) 4
b) \(B=16^5+2^{15}⋮33\)
Ta có \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\cdot2^5+2^{15}\cdot1\)
\(=2^{15}\cdot\left(2^5+1\right)\)
\(=2^5\cdot\left(32+1\right)\)
\(=2^{15}\cdot33⋮33\)
Do đó \(B⋮33\)
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
a: \(=\dfrac{-12}{7}\left(\dfrac{4}{35}+\dfrac{31}{35}\right)-\dfrac{2}{7}=\dfrac{-12}{7}-\dfrac{2}{7}=-2\)
b: =(-4)+(-4)+...+(-4)
=-4*25=-100
c: \(=157\cdot\left(-37\right)-41\cdot53+37\cdot157+51\cdot53\)
=10*53
=530
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
=\(\dfrac{3}{2}.\dfrac{56}{305}\)
= \(\dfrac{78}{305}\)
\(\left(x^2-4\right)\left(6-2x\right)=0\) ⇔ \(x^2-4=0\) hoặc \(6-2x=0\)
*Nếu \(x^2-4=0\)
⇒ x2 = 4
⇒ x ∈ {2 ; -2}
*Nếu \(6-2x=0\)
⇒2x = 6
⇒ x = 6 : 2 = 3
Vậy x ∈ { -2 ; 2 ; 3 }
b: =>3|x-5|=8+4=12
=>|x-5|=4
=>x-5=4 hoặc x-5=-4
=>x=9 hoặc x=1
d: =>2x+6=3-3x-2
=>2x+6=1-3x
=>5x=-5
hay x=-1
e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)
\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)
mà x>8
nên \(x\in\left\{10;17\right\}\)
=-1+(4-7)+(10-13)+(16-19)+...+(94-97)+(100-103)
=-1+(-3)+(-3)+(-3)+...+(-3)+(-3)(17 cặp)
=-1+(-3)*17
=-1+(-51)
=-52
a. 600 - 30 =570
b. 72 + (-3) = 69
c. 2021 + 33:(9 +2x12)
=2021 + 33: 33
=2021+1
=2022
d. 186: (44+2x9)
=186 : 62
=3