K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Ta có : 

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\)

\(2A< \frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right)2n}\)

\(2A< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n-2}-\frac{1}{2n}\)

\(2A< \frac{1}{2}-\frac{1}{2n}< \frac{1}{2}\)

\(2A< \frac{1}{2}\)

\(A< \frac{1}{4}\) ( đpcm ) 

Vậy \(A< \frac{1}{4}\)

Chúc bạn học tốt ~

20 tháng 3 2016

nhanh giúp mình

1 tháng 3 2018

2N = 2/4^2 + 2/6^2 + ....... + 2/(2n)^2

< 2/2.4 + 2/4.6 + ....... + 2/(2n-2).2n

= 1/2 - 1/4 + 1/4 - 1/6 + ....... + 1/2n-2 - 1/2n

= 1/2 - 1/2N < 2

=> N < 1/2 : 2 = 1/4

Tk mk nha

15 tháng 2 2017

Mình nghĩ gần 30 phút mới ra bài này ó; công nhận khó thật!!!

\(C=\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{\left(2n\right)^2}\\ =\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\\ < \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}\right)\\ =\frac{1}{4}\left(\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{4}\left(\text{đ}pcm\right)\)

\(D=\frac{2!}{3!}+\frac{2!}{4!}+....+\frac{2!}{n!}\\ =2!\left(\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{n!}\right)\\ < 2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{\left(n-2\right)\left(n-1\right)n}\right)=2\left(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n-1\right)n}\right)\right)\\ =1\left(\frac{1}{2}-\frac{1}{\left(n-1\right)n}\right)< 1\left(\text{đ}pcm\right)\)

Chúc bạn học tốt !!!!!

\(1+a^2+a^4+a^6+.....+a^{2n}\)

\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)

\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)

\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)

\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)