Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ gần 30 phút mới ra bài này ó; công nhận khó thật!!!
\(C=\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{\left(2n\right)^2}\\ =\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\\ < \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}\right)\\ =\frac{1}{4}\left(\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{4}\left(\text{đ}pcm\right)\)
\(D=\frac{2!}{3!}+\frac{2!}{4!}+....+\frac{2!}{n!}\\ =2!\left(\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{n!}\right)\\ < 2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{\left(n-2\right)\left(n-1\right)n}\right)=2\left(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n-1\right)n}\right)\right)\\ =1\left(\frac{1}{2}-\frac{1}{\left(n-1\right)n}\right)< 1\left(\text{đ}pcm\right)\)
Chúc bạn học tốt !!!!!
Đặt \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\)
Dễ thấy: \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)\(< A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\left(1\right)\)
Ta có:\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{7\cdot8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}< 1\left(2\right)\)
Từ \((1);(2)\) ta có: \(B< A< 1\Rightarrow B< 1\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)
vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...............
\(\frac{1}{8^2}< \frac{1}{7\cdot8}\)
nên \(B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
\(..........................\)
\(\frac{1}{8^2}=\frac{1}{8.8}< \frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}\) ( 1 )
mà \(\frac{7}{8}< 1\) ( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow B< 1\)
vậy ......................
có : 1/2^2 < 1/1*2; 1/3^2 < 1/2*3; 1/4^2 < 1/3*4;....; 1/8^2 < 1/7*8
=> B < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/7*8
=> B < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
=> B < 1 - 1/8
=> B < 7/8 < 1
=> B < 1
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)
\(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}\)
Mà : \(\frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
Vậy : B < 1
Ta có
\(\frac{1}{4^2}< \frac{1}{2.4}\)
\(\frac{1}{6^2}< \frac{1}{4.6}\)
..................
\(\frac{1}{100^2}< \frac{1}{98.100}\)
\(\Rightarrow\)\(N< \frac{1}{2.4}+\frac{1}{4.6}+....+\frac{1}{98.100}\)
Ta có công thức: \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức ta có:
\(N< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(N< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}< \frac{1}{4}\Rightarrow dpcm\)
Ai thấy đúng thì ủng hộ nha !!!
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}\)
\(2^2N=\frac{2^2}{4^2}+\frac{2^2}{6^2}+\frac{2^2}{8^2}+...+\frac{2^2}{100^2}\)
\(2^2N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)
\(\Rightarrow2^2N< 1\)
\(\Rightarrow N< \frac{1}{2^2}=\frac{1}{4}\)
Gải thiết cho \(N\in N\)và \(N\ge2\)
Mà \(\frac{1}{4}< 2\)
\(\Rightarrow N>\frac{1}{4}\)chứ
Theo mik là đề sai
2N = 2/4^2 + 2/6^2 + ....... + 2/(2n)^2
< 2/2.4 + 2/4.6 + ....... + 2/(2n-2).2n
= 1/2 - 1/4 + 1/4 - 1/6 + ....... + 1/2n-2 - 1/2n
= 1/2 - 1/2N < 2
=> N < 1/2 : 2 = 1/4
Tk mk nha