Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 5.(1/5.6+1/6.7+...+1/10.11)
A=5.(1/5-1/6+1/6-1/7+.....+1/10-1/11)
A=5.(1/5-1/11)
A=5.6/55=6/11
\(\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{9\times10}\right)\times x=\dfrac{3}{4}\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\times x=\dfrac{3}{4}\)
\(\left(1-\dfrac{1}{10}\right)\times x=\dfrac{3}{4}\)
\(\dfrac{9}{10}\times x=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}\times\dfrac{10}{9}\)
\(x=\dfrac{5}{6}\)
a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{5}-\frac{1}{10}\)
\(=\frac{1}{10}\)
b) \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{998.1000}\)
\(=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{998}-\frac{1}{1000}\)
\(=\frac{1}{10}-\frac{1}{1000}\)
\(=\frac{99}{1000}\)
c) \(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{69.90}\)
\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{89.90}\right)\)
\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{89}-\frac{1}{90}\right)\)
\(=4.\left(1-\frac{1}{90}\right)\)
\(=4.\frac{89}{90}\)
\(=\frac{178}{45}\)
_Chúc bạn học tốt_
Ta có: \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^6}\)
\(\Rightarrow B=\frac{1-\frac{1}{3^6}}{2}\)
\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}....\frac{1}{9x10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{9}-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
1/1*2+1/2*3+1/3*4+...+1/9*10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
nho k cho minh voi nhe
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ......... + \(\frac{1}{7.8}\)+ \(\frac{1}{8.9}\)+ \(\frac{1}{9.10}\)
\(=\)\(1\)\(-\)\(\frac{1}{10}\)
\(=\)\(\frac{9}{10}\)
A = \(\dfrac{4}{8\times9}\)+\(\dfrac{4}{9\times10}\)+\(\dfrac{4}{10\times11}\)+...+\(\dfrac{4}{66\times67}\)
A = 4 \(\times\)( \(\dfrac{1}{8\times9}\)+\(\dfrac{1}{9\times10}\)+\(\dfrac{1}{10\times11}\)+...+\(\dfrac{1}{66\times67}\))
A = 4\(\times\)(\(\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\)...+\(\dfrac{1}{66}-\dfrac{1}{67}\))
A = 4\(\times\)(\(\dfrac{1}{8}\) - \(\dfrac{1}{67}\))
A = 4 \(\times\) \(\dfrac{59}{536}\)
A = \(\dfrac{59}{134}\)
A =