Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 5.(1/5.6+1/6.7+...+1/10.11)
A=5.(1/5-1/6+1/6-1/7+.....+1/10-1/11)
A=5.(1/5-1/11)
A=5.6/55=6/11
\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)
\(\Rightarrow5A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow5A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\right)\)
\(\Rightarrow5A=1-\frac{1}{8}\)
\(\Rightarrow A=\left(1-\frac{1}{8}\right).\frac{1}{5}=\frac{7}{40}\)
\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)
\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{5}{7.8}\right)\)
\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=5\left(1-\frac{1}{8}\right)\)
\(A=5.\frac{7}{8}\)
\(A=\frac{38}{8}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{4}{15}+\frac{9}{5}\)
\(=\frac{31}{15}\)
Bài làm :
Ta có :
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}+\frac{2}{1\times2}+\frac{2}{2\times3}+...+\frac{2}{9\times10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{31}{15}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)
\(=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{4}{3\times4}-\frac{3}{3\times4}+\frac{5}{4\times5}-\frac{4}{4\times5}+\frac{6}{5\times6}-\frac{5}{5\times6}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}\)
\(=\frac{1}{3}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+\frac{3}{5.6}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\)
Gọi \(\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+......+\frac{3}{9.10}\right)\)là \(A\); \(\left(\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\right)\)là B . Ta có :
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}\cdot\frac{9}{10}=\frac{27}{10}\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{93}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\cdot\frac{49}{100}=\frac{539}{100}\)
\(\Rightarrow\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}=\frac{27}{10}+\frac{539}{100}=\frac{809}{100}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\frac{4}{15}=\frac{16}{45}\)
\(6xy+\left(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\right)=\frac{29}{8}\)
Đăt \(A=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\)
\(\Rightarrow A=\frac{3-2}{2x3}+\frac{4-3}{3x4}+\frac{5-4}{4x5}+...+\frac{8-7}{7x8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(\Rightarrow6xy+A=6xy+\frac{3}{8}=\frac{29}{8}\Rightarrow6xy=\frac{26}{8}\Rightarrow y=\frac{26}{8x6}\)
a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{5}-\frac{1}{10}\)
\(=\frac{1}{10}\)
b) \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{998.1000}\)
\(=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{998}-\frac{1}{1000}\)
\(=\frac{1}{10}-\frac{1}{1000}\)
\(=\frac{99}{1000}\)
c) \(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{69.90}\)
\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{89.90}\right)\)
\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{89}-\frac{1}{90}\right)\)
\(=4.\left(1-\frac{1}{90}\right)\)
\(=4.\frac{89}{90}\)
\(=\frac{178}{45}\)
_Chúc bạn học tốt_
a, \(=\frac{1}{10}\)