K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

GIÚP MIK VS MIK SẼ TiCK CHO BẠN ĐÚNG

28 tháng 9 2020

Câu hỏi của ꧁♥ღ๖ۣۜ Jinny - kun ๖ۣۜღ♥꧂ - Toán lớp 7 | Học trực tuyến

14 tháng 9 2020

Vì \(\left(2x-5\right)^{2020}\ge0\forall x\)\(\left(5y+1\right)^{2022}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)

mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)

Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)

14 tháng 9 2020

( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0

Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x

            ( 5y + 1 )2022 ≥ 0 ∀ y

=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y

Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0

Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)

22 tháng 2 2017

x, y, z thuộc j

22 tháng 2 2017

câu trả lời là : 80

14 tháng 11 2018

Sửa đề:

Tìm x;y;z biết\(\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\le0\)

Ta có: \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left(2y-8\right)^{20}\ge0\forall y\\\left(4z-3\right)^{2018}\ge0\forall z\end{cases}}\)

\(\Rightarrow\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\ge0\)

Mà \(\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\le0\)

\(\Rightarrow\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y-8\right)^{20}=0\\\left(4z-3\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\2y-8=0\\4z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=4\\z=\frac{3}{4}\end{cases}}\)

Vậy \(\hept{\begin{cases}x=\frac{5}{3}\\y=4\\z=\frac{3}{4}\end{cases}}\)

Tham khảo nhé~

2 tháng 1 2020

                                                                Bài giải

\(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}\le0\)

Mà \(\hept{\begin{cases}\left|3x-5\right|\ge0\\\left(2y+5\right)^{2008}\ge0\\\left(4z-3\right)^{2006}\ge0\end{cases}}\) \(\Rightarrow\) Chỉ xảy ra trường hợp : \(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}=0\)

\(\Rightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y+5\right)^{2008}=0\\\left(4z-3\right)^{2006}=0\end{cases}}\)            \(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}}\)         \(\Rightarrow\hept{\begin{cases}3x=5\\2y=-5\\4z=3\end{cases}}\)          \(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)

\(\Rightarrow\text{ }x=\frac{5}{3}\text{ , }y=-\frac{5}{2}\text{ , }z=\frac{3}{4}\)

5 tháng 11 2019

Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)

Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.

=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.

Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)

<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)

Vậy...

5 tháng 11 2019

thầy mình cho đè kia cơ

10 tháng 8 2023

\(\left(x-5\right)^{2020}+\left(y-x+1\right)^{2022}=0\left(1\right)\)

Ta có \(\left\{{}\begin{matrix}\left(x-5\right)^{2020}\ge0,\forall x\\\left(y-x+1\right)^{2022}\ge0,\forall x;y\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}\left(x-5\right)^{2020}=0\\\left(y-x+1\right)^{2022}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-5=0\\y-x+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\y-5+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)

10 tháng 8 2023

( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0

Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x

            ( 5y + 1 )2022 ≥ 0 ∀ y

=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y

Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0

Khi đó \hept{2�−5=05�+1=0⇔\hept{�=52�=−15\hept{2x5=05y+1=0\hept{x=25y=51