Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x-5\right)^{2020}\ge0\forall x\); \(\left(5y+1\right)^{2022}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)
mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)
Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)
Sửa đề:
Tìm x;y;z biết\(\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\le0\)
Ta có: \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left(2y-8\right)^{20}\ge0\forall y\\\left(4z-3\right)^{2018}\ge0\forall z\end{cases}}\)
\(\Rightarrow\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\ge0\)
Mà \(\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}\le0\)
\(\Rightarrow\left|3x-5\right|+\left(2y-8\right)^{20}+\left(4z-3\right)^{2018}=0\)
\(\Rightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y-8\right)^{20}=0\\\left(4z-3\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\2y-8=0\\4z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=4\\z=\frac{3}{4}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{5}{3}\\y=4\\z=\frac{3}{4}\end{cases}}\)
Tham khảo nhé~
Bài giải
\(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}\le0\)
Mà \(\hept{\begin{cases}\left|3x-5\right|\ge0\\\left(2y+5\right)^{2008}\ge0\\\left(4z-3\right)^{2006}\ge0\end{cases}}\) \(\Rightarrow\) Chỉ xảy ra trường hợp : \(\left|3x-5\right|+\left(2y+5\right)^{2008}+\left(4z-3\right)^{2006}=0\)
\(\Rightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left(2y+5\right)^{2008}=0\\\left(4z-3\right)^{2006}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x=5\\2y=-5\\4z=3\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)
\(\Rightarrow\text{ }x=\frac{5}{3}\text{ , }y=-\frac{5}{2}\text{ , }z=\frac{3}{4}\)
Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)
Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.
=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.
Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)
<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
Vậy...
\(\left(x-5\right)^{2020}+\left(y-x+1\right)^{2022}=0\left(1\right)\)
Ta có \(\left\{{}\begin{matrix}\left(x-5\right)^{2020}\ge0,\forall x\\\left(y-x+1\right)^{2022}\ge0,\forall x;y\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}\left(x-5\right)^{2020}=0\\\left(y-x+1\right)^{2022}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-5=0\\y-x+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y-5+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \hept{2�−5=05�+1=0⇔\hept{�=52�=−15\hept{2x−5=05y+1=0⇔\hept{x=25y=−51