Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2010 chia hết cho 2
mà 2009 ^2010 không chia hết cho 2
2009^2010 k chia hết cho 2010
Do 2009 và 2010 là 2 số tự nhiên liên tiếp => (2009;2010)=1
=> (20092010; 2010) = 1
=> 20092010 không chia hết cho 2010 ( đpcm)
Đơn giản quá chừng.
2010 chia hết cho 2 (1)
\(2009^{2010}=2009.2009....2009\)(2010 thừa số 9). Vì không có thừa số nào chẵn nên tích trên hay nói cách khác là \(2009^{2010}\) không chia hết cho 2 (2)
Kết hợp giữa (1) và (2) ta được 2009^2010 ko chia hết cho 2010
Ta thấy: 2009 đồng dư với 2009(mod 2010)
=>2009 đồng dư với -1(mod 2010)
=>20092008 đồng dư với (-1)2008(mod 2010)
=>20092008 đồng dư với 1(mod 2010)
Lại có: 2011 đồng dư với 1(mod 2010)
=>20112010 đồng dư với 12010(mod 2010)
=>20112010 đồng dư với 1(mod 2010)
Khi đó: 20092008+20112010 đồng dư với 1+1(mod 2010)
=>20092008+20112010 đồng dư với 2(mod 2010)
=>20092008+20112010 chia 2010 dư 2
=>20092008+20112010 không chia hết cho 10
=>Vô lí
Bạn xem lại đề nha
\(2009^{2011}+2011^{2009}=\left(2009^{2011}+1\right)+\left(2011^{2009}-1\right)\)
Ta có: \(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ.
\(a^n-b^n⋮\left(a-b\right)\forall n\inℕ^∗\)
Nên \(2009^{2011}+1⋮\left(2009+1\right),2011^{2009}-1⋮\left(2011-1\right)\)
Vậy \(2009^{2011}+1+2011^{2009}-1⋮2010\Rightarrow2009^{2011}+2011^{2009}⋮2010\)
\(2009^{2011}+1+2011^{2009}-1=\) (2009+1)(20092010- 20092009 +...- 2009+ 1)+(2011-1)(20112008+20112007+...+ 1) =
2010.A + 2010.B chia hết cho 2010
\(2011\equiv1\left(mod2010\right)\Rightarrow2011^{2009}\equiv1\left(mod2010\right)\)
\(2009\equiv-1\left(mod2010\right)\Rightarrow2009^{2011}\equiv-1\left(mod2010\right)\)
\(\Rightarrow2009^{2011}+2011^{2009}\equiv0\left(mod2010\right)\Rightarrow2009^{2011}+2011^{2009}⋮2010\)
Đơn giản thế này:
20092010 không chia hết cho 2 mà 2010 chia hết cho 2
=>20092010 không chia hết cho 2010 (đpcm)
cám ơn