K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

\(2009^{2011}+1+2011^{2009}-1=\)   (2009+1)(20092010- 20092009 +...- 2009+ 1)+(2011-1)(20112008+20112007+...+ 1) =

2010.A + 2010.B chia hết cho 2010

15 tháng 12 2018

\(2009^{2011}+2011^{2009}=\left(2009^{2011}+1\right)+\left(2011^{2009}-1\right)\)

Ta có: \(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ.

\(a^n-b^n⋮\left(a-b\right)\forall n\inℕ^∗\)

Nên \(2009^{2011}+1⋮\left(2009+1\right),2011^{2009}-1⋮\left(2011-1\right)\)

Vậy \(2009^{2011}+1+2011^{2009}-1⋮2010\Rightarrow2009^{2011}+2011^{2009}⋮2010\)

15 tháng 12 2018

Tại sao an+bn chia hết a+b

16 tháng 12 2018

\(2011\equiv1\left(mod2010\right)\Rightarrow2011^{2009}\equiv1\left(mod2010\right)\)

\(2009\equiv-1\left(mod2010\right)\Rightarrow2009^{2011}\equiv-1\left(mod2010\right)\)

\(\Rightarrow2009^{2011}+2011^{2009}\equiv0\left(mod2010\right)\Rightarrow2009^{2011}+2011^{2009}⋮2010\)

16 tháng 12 2018

mod là sao

12 tháng 2 2016

hình như bạn sai đề 

12 tháng 2 2016

2009^2008+2011^2010

=(2009^2)^1004+(2011^2)^1005

=....1^1004+....1^1005

=...1+...1=...2 không chia hết cho 2010 

bạn xem lại đề

11 tháng 7 2015

Đề \(\Rightarrow\left(a^{2011}+b^{2011}\right)-2\left(a^{2010}+b^{2010}\right)+\left(a^{2009}+b^{2009}\right)=0\)

\(\Leftrightarrow a^{2011}-2a^{2010}+a^{2009}+b^{2011}-2b^{2010}+b^{2009}=0\)

\(\Leftrightarrow a^{2009}\left(a^2-2a+1\right)+b^{2009}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2009}\left(a-1\right)^2+b^{2009}\left(b-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=0\text{ (do }a,\text{ }b>0\text{)}\)

\(\Leftrightarrow a=b=1\)

\(\Rightarrow a^{2012}+b^{2012}=1+1=2\)

11 tháng 1 2016

de sai roi tick minh nha