Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài A và B nè bạn!
A=1+3+32+...+3100
3A=3+32+33+...+3101
=>3A+1=1+3+32+...+3100+3101=A+3101
=>3A-A=3101-1
2A=3101-1
A=(3101-1)/2
B=1+4+42+...+450
4B=4+42+...+451
4B+1=1+4+42+...+450+451=B+451
=>4B-B=451-1
3B=451-1
B=(451-1)/3
a) Ta có: \(2A=2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
-
\(A=2+2^2+2^3+2^4+2^5+2^6+...+2^{100}\)
_______________________________________________________
\(A=2-2^{100}\)
Các bài khác cũng thế. Đây là mình tự nghĩ chứ không biết có đúng không. Có 60% sai! :)
Nhiều thế ưu tiên làm câu 2 trước
a) A = 1 + 3 + 32 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = 3101 - 1
2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)
b) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)
c) C = 1 + 5 + 52 + ... + 5100
5C = 5 + 52 + ... + 5101
5C - C = 5101 - 1
4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)
d) chả hiểu gì hết
a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)
=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)
=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
<=> \(2A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
b) Ta có: \(B=1+4+4^2+...+4^{100}\)
=> \(4B=4+4^2+4^3+...+4^{101}\)
=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)
<=> \(3B=4^{101}-1\)
=> \(B=\frac{4^{101}-1}{3}\)
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
Số số hạng của tổng A là ;
(1024 - 1) : 1 + 1 = 1024
Tổng là :
(1024 + 1) x 1024 : 2 = 1049600
a, Đặt \(A=1+3+3^2+3^3+....+3^{100}\)
=> \(3A=3+3^2+3^3+3^4+...+3^{101}\)
=> \(2A=3A-A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
Vậy giá trị của biểu thức là \(\frac{3^{101}-1}{2}\)
b, Đặt \(B=1+4+4^2+2^3+....+4^{50}\)
=> \(4B=4+4^2+4^3+4^4+....+4^{51}\)
=> \(3B=4B-B=4^{51}-1\)
=> \(B=\frac{4^{51}-1}{3}\)
Vậy giá trị của biểu thức là \(\frac{4^{51}-1}{3}\)