Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhiều thế ưu tiên làm câu 2 trước
a) A = 1 + 3 + 32 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = 3101 - 1
2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)
b) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)
c) C = 1 + 5 + 52 + ... + 5100
5C = 5 + 52 + ... + 5101
5C - C = 5101 - 1
4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)
d) chả hiểu gì hết
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
a) Ta có: \(2A=2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
-
\(A=2+2^2+2^3+2^4+2^5+2^6+...+2^{100}\)
_______________________________________________________
\(A=2-2^{100}\)
Các bài khác cũng thế. Đây là mình tự nghĩ chứ không biết có đúng không. Có 60% sai! :)
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1,
a) 1^3 + 2^3 + ... + 10^3 = ( x+1) ^2
( 1+2+3+4+5+...+10 ) ^ 2 = ( x+1) ^2
\(\left(\frac{10\times11}{2}\right)^2\)= ( x + 1 ) ^2
55^2 = ( x+1 ) ^2
=> x+1= 55 hoặc x + 1 = -55
x = 54 x = -56
Vậy : x = 54 hoặc x = -56
b, 1+3+5+...+99 = ( x-2 )^2
Đặt 1+3+5+...+99 là : A
=> Số các số hạng của A là : ( 99-1 ) : 2 + 1 = 50
=> A = ( 1+99 ) x 50 :2
A = 2500
Ta có : 2500 = ( x-2)^2
=> (x-2)^2 = 50^2 hoặc (x-2)^2 = (-50)^2
=> x-2=50 x - 2 = -50
x = 52 x = -48
Vậy : x = 52 hoặc x = -48
2,
a)A = 2^0 + 2^1 + 2^2 + ...+2^2006
2A = 2^1 + 2^2 + ... + 2^2007
2A - A = ( 2^1 + 2^2 + ... + 2^2007 ) - ( 2^0 + 2^1 + ... + 2^2006 )
A = 2^2007 - 2^0
A = 2^2007 - 1
Phần b Nhân với 3 làm tương tự
Phần c nhân với 4 lm tương tự
Phần d nhân với 5 làm tương tự
< Chúc bn hok tốt > nhớ k cho mik nhé
b1:
a)=3(1+2+3+4+5+6+7+8+9+10)
=3.55
=165
b)ta xét vế 1:
số các số hạng ở vế 1 là :(99-1):2+1=50 số
tổng số các số hạng ở vế 1 là:(1+99).(50:2)=250
ta có:(x-2).2=250
x-2=250:2
x-2=125
x=127
b2:
A=2(0+1+2+...+2006)
A=2 {[(2006+1):2].(2006+0)}
A=2(1004+(1003.2006))
A=4014044
B=3(1+2+3+...+100)
B=3((100:2).(100+1))
B=3.5050
B=15150
C=4(1+2+...+n)
C=4k(chứ ts đây mik chịu,thông cảm bn nhé!)
D=5(1+2+...+2000)
D=5((2000:2).(2000+1))
D=10005000
Câu 2;3;4 dễ quá... bỏ qua!!
Câu 5;6 khó quá ... khỏi làm!!
dễ quá bỏ qua!!, khó quá khỏi làm!!
cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
A= 2+2^2+2^3+2^4+...+2^100
2A=2^2+2^3+2^4+2^5+...+2^100+2^101
2A-A=(2^2+2^3+2^4+2^5+..+2^100+2^101)-(2+2^2+2^3+2^4+...+2^100)
A=2^101-2
A=2^100
B=1+3+3^2+3^3+...+3^2009
3B=3+3^2+3^3+3^4+...+3^2009+3^2010
3B+1=(1+3+3^2+3^3+3^4+...+3^2009)+3^2010
3B+1=B+3^2010
2B+1=3^2010
2B=3^2010-1
B=(3^2010-1):2
C=1+5+5^2+5^3+...+5^1998
5C=5+5^2+5^3+5^4+...+5^1998+5^1999
5C+1=(1+5+5^2+5^265^4+...+5^1998)+5^1999
5C+1=C+5^1999
4C+1=5^1999
4C=5^1999-1
C=(5^1999-1):5
D=4+4^2+4^3+...+4^n
4D=4^2+4^3+4^4+...+4^n+4^(n+1)
4D+4=(4+4^2+4^3+4^4+...+4^n)+4^(n+1)
4D+4=D+4^(n+1)
3D+4=4^(n+1)
3D=4^(n+1)-4
D=(4^(n+1)-4):3