K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

a) Ta có: \(2A=2^2+2^3+2^4+2^5+2^6+...+2^{99}\) 

-

                \(A=2+2^2+2^3+2^4+2^5+2^6+...+2^{100}\)

_______________________________________________________

                \(A=2-2^{100}\)

Các bài khác cũng thế. Đây là mình tự nghĩ chứ không biết có đúng không. Có 60% sai! :) 

30 tháng 12 2021
Sẽ Gầy bạn ạ
26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.

22 tháng 8 2017

a) Đặt \(C=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{100}}\)

\(\Rightarrow5C=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)

\(\Rightarrow5C-C=1-\dfrac{1}{5^{100}}\Rightarrow4C=1-\dfrac{1}{5^{100}}\Rightarrow C=\dfrac{1-\dfrac{1}{5^{100}}}{4}\)

\(\Rightarrow A=8.5^{100}.\dfrac{1-\dfrac{1}{5^{100}}}{4}+1=2.\left(5^{100}-1\right)+1=2.5^{100}-2+1=2.5^{100}-1\)

22 tháng 8 2017

b)\(B=\dfrac{4}{3}-\dfrac{4}{3^2}+...-\dfrac{4}{3^{100}}\)

\(B=4.\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)\)

Đặt \(\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)=D\)

\(\Rightarrow3D=1-\dfrac{1}{3}+...-\dfrac{1}{3^{99}}\)

\(\Rightarrow3D+D=1-\dfrac{1}{3^{100}}\)

\(\Rightarrow D=\dfrac{1-\dfrac{1}{3^{100}}}{4}\)

12 tháng 10 2015

tick mk nha Ngô Mậu Hoàng Đức

12 tháng 10 2015

Nhiều thế ưu tiên làm câu 2 trước 

a) A = 1 + 3 + 32 + ... + 3100

3A = 3 + 32 + ... + 3101

3A - A = 3101 - 1 

2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)

b) B = 1 + 4 + 42 + ... + 4100

4B = 4 + 42 + ... + 4101

4B - B = 4101 - 1 

3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)

c) C =  1 + 5 + 52 + ... + 5100

5C = 5 + 52 + ... + 5101

5C - C = 5101 - 1

4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)

d) chả hiểu gì hết 

6 tháng 1 2016

Bài 1

a) A = 2^0 + 2^1 + 2^2 +...+ 2^50

2A=2^1+2^2+2^3+...+2^51

2A-A=(2^1+2^2+2^3+...+2^51)-(2^0 + 2^1 + 2^2 +...+ 2^50)

A=(2^1-2^1)+(2^2-2^2)+...+(2^50-2^50)+(2^51-2^1)

A=0+0+...+0+(2^51-2^1)

A=2^51-2^1

b)B = 5 + 5^2 + 5^3 +...+ 5^99 + 5^100

5B=5^2+5^3+5^4+...+5^100+5^101

5B-B=(5^2+5^3+5^4+...+5^100+5^101)-( 5 + 5^2 + 5^3 +...+ 5^99 + 5^100)

4B=(5^2-5^2)+(5^3-5^3)+...+(5^100-5^100)+(5^101-5)

4B=0+0+...+0+(5^101-5)

4B=5^101-5

B=(5^101-5)/4

c)C = 3 - 3^2 + 3^3 - 3^4 +...+ 3^2009 - 3 ^2010

3C=3^2-3^3+3^4-3^5+...+3^2010-3^2011

3C-C=(3^2-3^3+3^4-3^5+...+3^2010-3^2011)-(3 - 3^2 + 3^3 - 3^4 +...+ 3^2009 - 3 ^2010)

...............................................!!!!!!!!!!!!!!!!!!!!!!!!

Bài 2

8(mình k0 chắc)

6 tháng 1 2016

Làm bài 1 cũng đc rồi. Cảm ơn bạn nhiều

21 tháng 3 2020

Ta luôn có: \(2^a+2^{a+1}+2^{a+2}+...+2^n=2^{n+1}-2^a\), áp dụng vào biểu thức A, ta có:

\(A=2+2^2+2^3+2^4+...+2^{2019}+2^{2020}=2^{2021}-2\)

Xem lại đề bài của biểu thức B và C xem có gì sai không.

15 tháng 1 2016

4. a. A = -a + b - c + a + b + c = 2b

b. Thay b = -1 vào A => A = 2.(-1) = -2

5. a. = (1-2) + (3-4) + (5-6) + ... + (99-100) (có tất cả 50 cặp)

= -1 + (-1) + ... + (-1)

= -1.50

= -50

b. = (4-2) + (8-6) + ... + (2016 - 2014) ( có tất cả 504 cặp )

= 2 + 2 + ... + 2

= 2.504

= 1008

15 tháng 1 2016

4) a) A=(-a+b-c)-(-a-b-c)=-a+b-c+a+b+c=(-a+a)+(b+b)+(-c+c)=0+2b+0=2b

5)a) -50

  b) 1008