Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2015\times2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}+\frac{1}{2016\cdot2017}\)
\(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{2016-2015}{2015\cdot2016}+\frac{2017-2016}{2016\cdot2017}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)(làm gọn một chút)
\(1-\frac{1}{2017}=\frac{2016}{2017}\)
Gọi B = 1x2 + 2 x 3 + 3 x 4 + ... + 2016 x2017
3B = 3 x ( 1x2 + 2x3 + 3x4 + ... + 2016x2017)
= 1x2x3 + 2x3x3 + 3x4x3 + ... + 2016x2017x3 )
= 1x2x3 + 2x3x( 4-1) + 3x4x( 5 -2 ) + ... + 2016x2017x( 2018 - 2015)
= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + ... + 2016x2017x2018 - 2015x2016x2017
= 2016 x2017 x2018
B = 672 x2017 x2018
Mà A = \(\frac{672x2017x2018}{2017x2018}\)
= 672
Vậy A = 672
A = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3A = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + 99 x 100 x (101 - 98)
3A = 1 x 2 x 3 - 0 x 1 x 2 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... + 99 x 100 x 101 - 98 x 99 x 100
3A = (1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 + ... + 99 x 100 x 101) - (0 x 1 x 2 + 1 x 2 x 3 + 2 x 3 x 4 + ... + 98 x 99 x 100)
3A = 99 x 100 x 101
A = 33 x 100 x 101
A = 333300
A = 1x2+2x3+3x4+4x5+....+99x100
3A=1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+...+99x100x(101-98)
3A= 1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+...+99x100x101-98x99x100
3A= 99x100x101
A=999900 : 3 = 333300
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
1 \(\times\) 2 \(\times\) 3 = 1 \(\times\) 2 \(\times\) 3
2 \(\times\) 3 \(\times\) 3 = 2 \(\times\) 3 \(\times\) ( 4 -1) = 2 \(\times\) 3 \(\times\) 4 - 1 \(\times\) 2 \(\times\) 3
3 \(\times\) 4 \(\times\) 3 = 3 \(\times\) 4 \(\times\) ( 5 -2) = 3 \(\times\) 4 \(\times\) 5 - 2 \(\times\) 3 \(\times\) 4
4 \(\times\) 5 \(\times\) 3 = 4 \(\times\) 5 \(\times\) ( 6- 3) = 4 \(\times\) 5 \(\times\) 6 - 3 \(\times\) 4 \(\times\) 5
..................................................................................
99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)(101-98) =99\(\times\)100\(\times\)101 - 98\(\times\)99\(\times\)100
Cộng vế với vế ta được:
1\(\times\)2\(\times\)3 + 2\(\times\)3\(\times\)3 + 3\(\times\)4\(\times\)3+ ...+99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)101
(1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+99\(\times\)100)\(\times\)3 = 99\(\times\)100\(\times\)101
1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = (99 \(\times\)100 \(\times\)101):3
1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = 333 300
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 2014x2015
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 2014x2015x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 2014x2015x(2016-2013)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 2014x2015x2016 - 2014x2015x2013.
A x 3 = 2014x2015x2016
A = 2014x2015x2016 : 3
A = 2727117120
Đặt A=1x2+2x3+3x4+...+2016x2017
=>3A=3x1x2+3x2x3+3x3x4+...+3x2016x2017
=>3A=(3-0)x1x2+(4-1)x2x3+(5-2)x3x4+...+(2018-2015)x2016x2017
=>3A=1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+...+2016x2017x2018-2015x2016x2017
=>3A=2016x2017x2018
=>A=\(\frac{2016\times2017\times2018}{3}\)(tự tính nha)
S = 1x2 + 2x3 + 3x4 + 4x5 + ... + 2016x2017
3S = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 2016x2017x(2018-2015)
3S = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 2016x2017x2018 - 2015x2016x2017
3S = 2016x2017x2018
S = 1/3 x 2016x2017x2018.