Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4+16x^2+100+8x^3+80x+20x^2-7x^2-28x-77+7<0\)
\(x^4+8x^3+29x^2+52x+30<0\)
tự làm tiếp nha
ta có : \(x^2-4x+10< 0\Leftrightarrow\left(x-2\right)^2+6< 0\left(vôlí\right)\)
vậy bpt vô nghiệm
f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0
ta xét Th (x^3-4x^2-2x-15)/(x^2+x+1)=0
\(\Leftrightarrow\frac{x^3-4x^2-2x-15}{x^2+x+1}=\frac{\left(x-5\right)\left(x^2+x+3\right)}{x^2+x+1}\Rightarrow x=5\)
x2+x+3=0
12-4(1.3=-11
=>pt ko có nghiệm thực
=>x=5 vì (x^3-4x^2-2x-15)/(x^2+x+1)<0
=>\(x\in\left\{-\infty;5\right\}\)
\(x^2-8x+16< 0\)
\(\Leftrightarrow\left(x-4\right)^2< 0\)
\(\Rightarrow\)vô lí
\(\Leftrightarrow x^2-4x+3>0\left(x\ne\pm5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)
Lời giải:
ĐK: $25-x^2>0\Leftrightarrow -5< x< 5$
$\frac{x^2-4x+3}{\sqrt{25-x^2}}>0$
$\Leftrightarrow x^2-4x+3>0$ (do $\sqrt{25-x^2}>0$)
$\Leftrightarrow (x-1)(x-3)>0$
$\Leftrightarrow x>3$ hoặc $x<1$
Kết hợp với đkxđ suy ra $3< x< 5$ hoặc $-5< x< 1$
x2 - 4x + 10 < 0
<=> (x - 2)2 + 6 < 0
<=> (x - 2)2 < -6
=> Vô lý