Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy: \(S=\left\{x|x>3\right\}\)
\(b,x^2-8x+16< 0\)
\(\Leftrightarrow\left(x-4\right)^2< 0\)
Vì: \(\left(x-4\right)^2\ge0\)
=> vô lí=> ko có giá trị của x thỏa mãn
Vậy : \(S=\varnothing\)
=.= hok tốt!!
ta có : \(x^2-8x+16=\left(x-4\right)^2\ge0\)
\(\Rightarrow\) bất phương trình \(x^2-8x+16< 0\) vô nghiệm
x2 - 8x - 9 ≥ 0
<=> (x+1)(x-9)\(\ge\)0
<=> \(\hept{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
<=> \(\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)
x2 - 4x + 10 < 0
<=> (x - 2)2 + 6 < 0
<=> (x - 2)2 < -6
=> Vô lý
a,\(6x^2+x-5=0\)
\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)
Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)
Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)
b, \(3x^2+4x+2=0\)
\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)
Vì \(\Delta< 0\)nên pt vô nghiệm
c, \(x^2-8x+16=0\)
\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)
Vì \(\Delta=0\)nên pt có nghiệm kép
\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)
a) \(6x^2+x-5=0\)
Ta có : \(\Delta=1+4.6.5=121>0\)
\(\Rightarrow\sqrt{\Delta}=11\)
Phương trình có hai nghiệm :
\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)
\(x_2=\frac{-1-11}{2.6}=-1\)
b) \(3x^2+4x+2=0\)
Ta có : \(\Delta=4^2-4.3.2=-8< 0\)
Vậy phương trình vô nghiệm
c) \(x^2-8x+16=0\)
Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)
Phương trình có nghiệm kép :
\(x_1=x_2=\frac{8}{2}=-4\)
giải giúp mik vs các bn ơi
\(x^2-8x+16< 0\)
\(\Leftrightarrow\left(x-4\right)^2< 0\)
\(\Rightarrow\)vô lí