Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 4x + 10 < 0
<=> (x - 2)2 + 6 < 0
<=> (x - 2)2 < -6
=> Vô lý
\(\Leftrightarrow x^4+16x^2+100+8x^3+80x+20x^2-7x^2-28x-77+7<0\)
\(x^4+8x^3+29x^2+52x+30<0\)
tự làm tiếp nha
\(a,x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy: \(S=\left\{x|x>3\right\}\)
\(b,x^2-8x+16< 0\)
\(\Leftrightarrow\left(x-4\right)^2< 0\)
Vì: \(\left(x-4\right)^2\ge0\)
=> vô lí=> ko có giá trị của x thỏa mãn
Vậy : \(S=\varnothing\)
=.= hok tốt!!
đánh giá thôi bạn
\(VT=\sqrt{\left(3x+1\right)^2+\left(2x-3\right)^2}+\sqrt{\left(2x-\frac{5}{2}\right)^2+\left(x-\frac{3}{2}\right)^2}+\sqrt{x^2+\left(4x-6\right)^2}\)
\(\ge\sqrt{\left(3x+1\right)^2}+\sqrt{\left(2x-\frac{5}{2}\right)^2}+\sqrt{x^2}=\left|3x+1\right|+\left|2x-\frac{5}{2}\right|+\left|x\right|\)
\(\ge\left|3x+1+2x-\frac{5}{2}+x\right|=\left|6x-\frac{3}{2}\right|\ge6x-\frac{3}{2}\)
Dấu "=" xảy ra khi x = \(\frac{3}{2}\)
\(VP=\frac{1}{2}\left[-2\left(2x-3\right)^2+12x-3\right]\le\frac{1}{2}\left(12x-3\right)=6x-\frac{3}{2}\)
Dấu "=" xảy ra khi x = \(\frac{3}{2}\)
Từ đó suy ra nghiệm phương trình là \(x=\frac{3}{2}\)
f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0
ta xét Th (x^3-4x^2-2x-15)/(x^2+x+1)=0
\(\Leftrightarrow\frac{x^3-4x^2-2x-15}{x^2+x+1}=\frac{\left(x-5\right)\left(x^2+x+3\right)}{x^2+x+1}\Rightarrow x=5\)
x2+x+3=0
12-4(1.3=-11
=>pt ko có nghiệm thực
=>x=5 vì (x^3-4x^2-2x-15)/(x^2+x+1)<0
=>\(x\in\left\{-\infty;5\right\}\)
Ta có VT = (3x - 2)(2x2 + x + 5)< 0 nên 3x-2<0 => x<2/3