Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Giải
Bạn tự vẽ hình
\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\)
=> Tamgiac AIC = tamgiac AIB
=> IB = IC (dn)
b, Dùng PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E
=> Goc AFE = (180 - goc BAC) : 2
Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2
=> Goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC
Vậy ... ( đpcm )
a) Tam giác ABC cân tại A
AI là đường cao của tam giác ABC => AI cũng là đường trung tuyến của tam giác ABC
=> IB = IC
b) Ta có: \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6\) (cm)
Tam giác ABI vuông tại I
Áp dụng định lý Pytago suy ra:
\(AI^2+BI^2=AB^2\)
\(\Rightarrow AI=\sqrt{AB^2-BI^2}=\sqrt{10^2-6^2}=8\) (cm)
c) Tam giác ABC cân tại A => AB = AC
Ta có: BE = CF suy ra: AB+BE = AC+CF
=> AE = AF
=> Tam giác AEF cân tại A
=> \(\widehat{F}=\widehat{E}\)
Và tam giác ABC cân tại A => \(\widehat{B}=\widehat{F}\)
=> \(\widehat{ABC}=\widehat{F};\widehat{ACB}=\widehat{F}\)
Mà \(\widehat{ABC}\) và \(\widehat{F}\) ở vị trí so le trong => BC // EF
=> đpcm
B1:tự vẽ hình:>
b,Xét t/g vg ABH và t/g vg ACK có
AB=AC(vì t/g ABC cân)
Góc A chung
=>t/g ABH=t/g ACK(ch-gn)
c,Ta có:AK+KB=AB
AH+HC=AC
Mà AB=AC,AK=AH(t/gABH=t/gACK)
=>KB=HC(1)
Mặt khác:K1+K2=H1+H2=180o
Mà K1=H1
=>K2=H2(2)
Vì t/g ABH=t/g ACK(cmt)
=>Góc ABH=góc ACK(2 góc t.ư) (3)
Từ(1),(2) và (3)=>t/g OBK=t/g OCH(g.c.g)
c,chưa nghĩ ra
B2,Tự vẽ hình
a,t/g ABC cân tại A
=>Góc ABC=góc ACB(1)
EI // AF => góc EIB = góc ACB(2)
Từ (1) và (2)=>góc ABC=góc EIB
=>t/g BEI cân tại E
b,t/g BEI cân tại E
=>BE=EI mà BE=CF
=>CF=EI
Xét t/g IEO và t/g CFO có
CF=EI
Góc IDE=góc COF (đối đỉnh)
góc CFI=góc OEI
=>t/gIEO=t/gCFO(g.c.g)
=>OE=OF(2 cạnh t.ư)
c,Ta có :ABKC là hình thoi(ABK=ACK=90o)
Mà t/g ABC là t/g cân tại A
=>t/g BKC cân tại K=>BK=KC
Xét t/g CFK và t/g BEK có:
BK=KC
EBK=OCF
CF=BE
=>t/g CFK=t/g BEK(g.c.g)
=>t/g EKF cân tại K
Có OE=OF(cm ở câu b)
=>Ok là trung tuyến EKF
=>OK là trung trực
=>OK vuông EF
thank