K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2021

1488075369_abc.jpg

mình chụp ảnh không biết bạn có hiểu không

2 tháng 2 2019

a, tu ve hinh :

tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)

goc AIC = goc AIB = 90 do AI | BC (gt)

=> tamgiac AIC = tamgiac AIB (ch - gn)

=> IB = IC (dn)

b, dung PY-TA-GO

c, AE = AF (gt) => tamgiac AFE can tai E (dn)

=> goc AFE = (180 - goc BAC) : 2 (tc)

tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)

=> goc AFE = goc ACB ma 2 goc nay dong vi 

=> EF // BC (dh)

vay_

2 tháng 2 2019

                           Giải

Bạn tự vẽ hình

\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)

 \(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\) 

=> Tamgiac AIC = tamgiac AIB 

=> IB = IC (dn)

b, Dùng PY-TA-GO

c, AE = AF (gt) => tamgiac AFE can tai E 

=> Goc AFE = (180 - goc BAC) : 2 

Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 

=> Goc AFE = goc ACB ma 2 goc nay dong vi 

=> EF // BC 

Vậy ... ( đpcm )

19 tháng 11 2023

a:

AB+BF=AF

AE+EC=AC

mà AB=AE và AC=AF

nên BF=EC

Xét ΔAEF và ΔABC có

AE=AB

\(\widehat{EAF}\) chung

AF=AC

Do đó: ΔAEF=ΔABC

=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)

\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

\(\widehat{DFB}=\widehat{DCE}\)

Do đó: ΔDBF=ΔDEC

=>DB=DE

Xét ΔABD và ΔAED có

AB=AE

BD=ED

AD chung

Do đó: ΔABD=ΔAED

=>\(\widehat{BAD}=\widehat{EAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔAEM có

AB=AE

\(\widehat{BAM}=\widehat{EAM}\)

AM chung

Do đó: ΔABM=ΔAEM

=>MB=ME

AC-AB=EC

mà EC>MC-ME

và MC=MF

nên AC-AB>MC-ME=MC-MB(ĐPCM)

8 tháng 4 2021

a, tu ve hinh :

tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)

goc AIC = goc AIB = 90 do AI | BC (gt)

=> tamgiac AIC = tamgiac AIB (ch - gn)

=> IB = IC (dn)

b, dung PY-TA-GO

c, AE = AF (gt) => tamgiac AFE can tai E (dn)

=> goc AFE = (180 - goc BAC) : 2 (tc)

tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)

=> goc AFE = goc ACB ma 2 goc nay dong vi 

=> EF // BC (dh)

vay_