Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy 1/22 < 1/1.2 ; 1/32 < 1/2.3 ; 1/42 <1/3.4 ; 1/52 < 1/4.5 ; 1/62 < 1/5.6 ; 1/72 <1/6.7 ; 1/82 < 1/7.8
suy ra B < 1/1.2 + 1/2.3 +1/3.4 +1/4.5 +1/5.6 + 1/6.7 + 1/7.8
Đặt A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 -1/8 = 1-1/8
suy ra A <1 mà B<A nên B<1
\(1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+9^2+10^2=385\)385
mình giải rồi đó
12+22+32+42+52+62+72+82+92+102
=1+4+9+16+25+36+49+64+81+100
=1+49+4+36+9+81+16+64+25+100
=50+40+90+80+125
=90+170+125 =260+125 =385
ai thấy mình đúng thì chọn nha!!!
\(A,\frac{4^9.36+64}{16^4.100}=\frac{\left(2^2\right)^9.2^2.3^2+2^6}{\left(2^4\right)^4.2^2.5^2}=\frac{2^{20}.3^2+2^6}{2^{18}.5^2}=\frac{2^6\left(2^{14}.3^2+1\right)}{2^{18}.5^2}=\frac{2^{14}.3^2+1}{2^{12}.5^2}=\frac{147457}{102400}\)
B,
\(\frac{11.3^{22}.3-9^{13}}{\left(2.3^{14}\right)^2}=\frac{11.3^{22}-\left(3^2\right)^{13}}{2^2.3^{28}}=\frac{11.3^{22}-3^{26}}{2^2.3^{28}}=\frac{3^{22}\left(11.1-3^4\right)}{2^2.3^{28}}=\frac{11-81}{2^2.3^6}=-\frac{70}{2916}=-\frac{35}{1456}\)
c,
\(\frac{45^3.20^4.18}{180^5}=\frac{\left(3^2.5\right)^3.\left(5.2^2\right)^4.2.3^2}{\left(2^2.3^2.5\right)^5}=\frac{3^6.5^3.5^4.2^8.2.3^2}{2^{10}.3^{10}.5^5}=\frac{3^8.2^{10}.5^7}{2^{10}.3^{10}.5^5}=\frac{5^2}{3^2}=\frac{25}{9}\)
\(\frac{4^9\cdot36+64}{16^4\cdot100}=\frac{2^6\cdot147457}{2^{16}\cdot100}=\frac{147457}{2^{10}\cdot100}\)
\(\frac{11\cdot3^{22}\cdot3-9^{13}}{2^2\cdot3^{28}}=\frac{3^{23}\left(11-3^3\right)}{2^2\cdot3^{28}}=\frac{-16\cdot3^{23}}{2^2\cdot3^{28}}=\frac{-4}{243}\)
\(\frac{45^3\cdot20^4\cdot18}{180^5}=\frac{3^8\cdot2^9\cdot5^7}{2^{10}\cdot3^{10}\cdot5^5}=\frac{25}{18}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)