K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A,\frac{4^9.36+64}{16^4.100}=\frac{\left(2^2\right)^9.2^2.3^2+2^6}{\left(2^4\right)^4.2^2.5^2}=\frac{2^{20}.3^2+2^6}{2^{18}.5^2}=\frac{2^6\left(2^{14}.3^2+1\right)}{2^{18}.5^2}=\frac{2^{14}.3^2+1}{2^{12}.5^2}=\frac{147457}{102400}\)

B,

\(\frac{11.3^{22}.3-9^{13}}{\left(2.3^{14}\right)^2}=\frac{11.3^{22}-\left(3^2\right)^{13}}{2^2.3^{28}}=\frac{11.3^{22}-3^{26}}{2^2.3^{28}}=\frac{3^{22}\left(11.1-3^4\right)}{2^2.3^{28}}=\frac{11-81}{2^2.3^6}=-\frac{70}{2916}=-\frac{35}{1456}\)

c, 

\(\frac{45^3.20^4.18}{180^5}=\frac{\left(3^2.5\right)^3.\left(5.2^2\right)^4.2.3^2}{\left(2^2.3^2.5\right)^5}=\frac{3^6.5^3.5^4.2^8.2.3^2}{2^{10}.3^{10}.5^5}=\frac{3^8.2^{10}.5^7}{2^{10}.3^{10}.5^5}=\frac{5^2}{3^2}=\frac{25}{9}\)

23 tháng 7 2019

\(\frac{4^9\cdot36+64}{16^4\cdot100}=\frac{2^6\cdot147457}{2^{16}\cdot100}=\frac{147457}{2^{10}\cdot100}\)

\(\frac{11\cdot3^{22}\cdot3-9^{13}}{2^2\cdot3^{28}}=\frac{3^{23}\left(11-3^3\right)}{2^2\cdot3^{28}}=\frac{-16\cdot3^{23}}{2^2\cdot3^{28}}=\frac{-4}{243}\)

\(\frac{45^3\cdot20^4\cdot18}{180^5}=\frac{3^8\cdot2^9\cdot5^7}{2^{10}\cdot3^{10}\cdot5^5}=\frac{25}{18}\)

15 tháng 4 2019

a)\(\left(10^2+11^2+12^2\right)\div\left(13^2+14^2\right)\)

\(=\left(100+121+144\right)\div\left(169+196\right)\)

\(=365\div365\)

\(=1\)

b) \(1.2.3...9-1.2.3...8-1.2.3...8^2\)

\(=1.2.3...8\left(9-1-8\right)\)

\(=1.2.3...8.0\)

\(=0\)

15 tháng 4 2019

d) \(1152-\left(374+1152\right)+\left(-65+374\right)\)

\(=1152-374-1152-65+374\)

\(=\left(1152-1152\right)-65+\left(374-374\right)\)

\(=0-65+0\)

\(=-65\)

e) \(13-12+11+10-9+8-7-6+5-4+3+2-1\)

\(=13-\left(12-11\right)+\left(10-9\right)+\left(8-7\right)-\left(6-5\right)-\left(4-3\right)\)\(+\left(2-1\right)\)

\(=13-1+1+1-1-1+1\)

\(=13+0+0+0\)

\(=13\)

\(a;5^{23}=5\cdot5^{22}< 6\cdot5^{22}\Rightarrow5^{23}< 6\cdot5^{22}\)

\(b;7\cdot2^{13}< 8\cdot2^{13}=2^3\cdot2^{13}=2^{15}\)

\(c;21^{15}=3^{15}\cdot7^{15}>3^{15}\cdot7^{14}=27^5\cdot49^8\)

\(d;199^{20}< 200^{20}=10^{40}\cdot2^{20}< 10^{45}\cdot2^{15}=2000^{15}< 2001^{15}\)

\(e;3^{39}=9^{13}< 11^{13}< 11^{21}\)

15 tháng 10 2017

ở sách BT hay SGK đấy