K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

1) a) 9782+ 222+ 978.44                                                                     b) 8212 + 3212 - 821.642

     = 9782 + 222 + 2. 22. 978                                                                = 8212 + 3212- 2. 321 .821

     = (978+22)2                                                                                         = ( 821 - 321)2

     = 10002                                                                                                                       = 5002

     = 1 000 000                                                                                   = 250 000

7 tháng 8 2019

2) (a+b+c)2+(a+b-c)2

   = a2+b2+ c2 + 2ab +2ac+2bc+a2+b2-c2+ 2ab -2ac -2bc

  = 2a2+2b2+4ab

  = 2(a+ b2 + 2ab)

 = 2( a+b)2

12 tháng 7 2017

\(821^2+321^2-821.642\)

\(=821^2+321^2-2.821.321\)

\(=\left(821-321\right)^2\) (Áp dụng hằng đẳng thức (a-b)2=a2-2ab+b2)

\(=500^2=250000\)

12 tháng 7 2017

8212 + 3212 - 821 . 642

= 8212 + 3212 - 2.821.321

= (821 - 321)2

= 5002

= 250000.

12 tháng 7 2017

\(812^2+321^2-821.642\)

\(=\left(812+321\right)\left(812+321\right)\)

\(=\left(812+321\right)^2\)

12 tháng 7 2017

hihic.ơn nha

11 tháng 4 2019

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow10+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-5\)

\(\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=25\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right).0=25\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=25\)

\(a^2+b^2+c^2=10\Leftrightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\)

\(\Leftrightarrow a^4+b^4+c^4+2.25=100\Leftrightarrow a^4+b^4+c^4=50\)

\(A=a^2\left(1-a^2\right)+b^2\left(1-b^2\right)+c^2\left(1-c^2\right)=a^2+b^2+c^2-\left(a^4+b^4+c^4\right)\)

\(A=10-50=-40\)

Bài 2: Rút gọn biểu thức sau một cách nhanh nhất:

a, A=(6x-2)2+(2-5x)2+2.(6x-2)(2-5x)

\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(2-5x\right)+\left(2-5x\right)^2\)

\(\text{(Hằng đẳng thức số 2)}\)

\(=\left(6x-2+2-5x\right)\)

\(=x\)

\(B=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1+2a\right)\left(2a^2+1-2a\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2\)

\(=-4a^2\)

26 tháng 10 2018

Bài 1:

a) \(100^2-99^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+...+2+1\)

=> tự làm tiếp :))

b) tương tự

Bài 2 :

a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\)

\(A=2^{16}-1< 2^6=B\)

b) Phân tích \(2004\cdot2006=\left(2005-1\right)\left(2005+1\right)=\left(2005^2-1\right)\)rồi áp dụng hđt thứ 3 tự làm tiếp như câu a)

Bài 3:

a) Cứ khai triển hết ra 

b) \(a^2+b^2+c^2=ab+bc+ac\)

\(a^2+b^2+c^2-ab-bc-ac=0\)

Nhân 2 vào cả 2 vế được :

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+c^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà mũ 2 luôn lớn hơn hoặc bằng 0

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\left(đpcm\right)}\)

P.s: toàn bài nâng cao làm hơi ẩu tí ^^