Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn áp dụng công thức tổng quát : \(a_1^3+a_2^3+...+a_n^3=\left(a_1+a_2+...+a_n\right)^2\)
2/a) Để phương trình có hai nghiệm phân biệt thì \(\Delta=m^2-4\left(m-1\right)>0\Leftrightarrow m^2-4m+4>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
b) Ta có: \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=26\) (1)
Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Thay vào (1) ta có:\(\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=26\)
\(\Leftrightarrow-m\left[m^2-3\left(m-1\right)\right]=26\)
\(\Leftrightarrow-m^3+3m^2-3m=26\)
\(\Leftrightarrow-m^3+3m^2-3m-26=0\)
\(\Leftrightarrow\left(-m^3-2m^2\right)+\left(5m^2+10m\right)-\left(13m+26\right)=0\)
\(\Leftrightarrow-m^2\left(m+2\right)+5m\left(m+2\right)-13\left(m+2\right)=0\)
\(\Leftrightarrow\left(m+2\right)\left(-m^2+5m-13\right)=0\)
\(\Leftrightarrow\left(m+2\right)\left(m^2-5m+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=-2\\m^2-5m+13=0\left(1\right)\end{cases}}\)
Ta có: \(m^2-5m+13=\left(m-\frac{5}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}>0\forall x\)
Nên (1) vô nghiệm.Do đó m = -2
Đúng không ạ?Em không chắc đâu nha!
Vì n . n! = (n + 1 – 1).n! = (n + 1)! – n! nên:
S = 1.1! + 2.2! + 3.3! + 4.4! + ... + 16.16! = (2! – 1!) + (3! – 2!) + ... + ( 17! – 16!)
= 17! – 1
1) Bạn phân tích thành : \(\left(2703.10^4+2013\right).\left(27032.10^7+142015\right)\)
Sau đó nhân ra cộng các hạng tử theo cột dọc là ra nhé
2) \(D=212012^3.212216=\left(212.10^3+12\right)^3.\left(212.10^3+216\right)\)
Sau đó bạn áp dụng hằng đẳng thức \(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)rồi nhân ra như câu 1) là ra nhé ^^