K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2020

1. Hàm xác định trên R khi và chỉ khi:

\(sinx+m\ge0;\forall x\)

\(\Leftrightarrow-m\le sinx\Leftrightarrow-m\le\min\limits_{x\in R}sinx=-1\)

\(\Leftrightarrow m\ge1\)

2.

\(\Leftrightarrow mcosx+1>0\) ;\(\forall x\)

\(\Leftrightarrow m.cosx>-1\)

- Với \(m=0\) thỏa mãn

- Với \(m>0\Rightarrow cosx>-\frac{1}{m}\) ;\(\forall x\Leftrightarrow-\frac{1}{m}< -1\Leftrightarrow m< 1\)

- Với \(m< 0\Leftrightarrow cosx< -\frac{1}{m}\) ;\(\forall x\Leftrightarrow-\frac{1}{m}>1\Leftrightarrow m>-1\)

Vậy \(-1< m< 1\)

NV
30 tháng 6 2021

a.

\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge max\left(cosx\right)\)

\(\Leftrightarrow m\ge1\)

b.

\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)

\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)

\(\Leftrightarrow m\le-2\)

c.

\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

30 tháng 6 2021

Đặt \(t=cosx;t\in\left[-1;1\right]\)

Để hàm số có tập xác định R

\(\Leftrightarrow cosx^2-\left(2+m\right)cosx+2m\ge0;\forall x\)

\(\Leftrightarrow t^2-\left(2+m\right)t+2m\ge0\) với mọi \(t\in\left[-1;1\right]\)

Đặt \(f\left(t\right)=t^2-\left(2+m\right)t+2m\)\(I\left(\dfrac{2+m}{2};f\left(\dfrac{2+m}{2}\right)\right)\)

TH1: \(\dfrac{2+m}{2}< -1\) \(\Leftrightarrow m< -4\)

Để \(f\left(t\right)\ge0;\forall t\in\left[-1;1\right]\) \(\Leftrightarrow\)\(f\left(t\right)_{min}=f\left(-1\right)\ge0\) \(\Leftrightarrow3+3m\ge0\Leftrightarrow m\ge-1\)(ktm đk)

TH2: \(-1\le\dfrac{m+2}{2}\le1\)\(\Leftrightarrow-4\le m\le0\)

Để \(f\left(t\right)\ge0;\forall t\in\left[-1;1\right]\) \(\Leftrightarrow f\left(t\right)_{min}=f\left(\dfrac{2+m}{2}\right)\ge0\)\(\Leftrightarrow-m^2+4m-4\ge0\)\(\Leftrightarrow m=2\) (ktm đk)

TH3:\(\dfrac{m+2}{2}>1\) \(\Leftrightarrow m>0\)

Để \(f\left(t\right)\ge0;\forall t\in\left[-1;1\right]\)\(\Leftrightarrow f\left(t\right)_{min}=f\left(1\right)\ge0\)\(\Leftrightarrow m-1\ge0\Leftrightarrow m\ge1\)

Kết hợp cả ba TH \(\Rightarrow m\ge1\)

Vậy...

NV
30 tháng 6 2021

Đơn giản hơn:

\(t^2-\left(m+2\right)t+2m\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow t\left(t-2\right)-m\left(t-2\right)\ge0\)

\(\Leftrightarrow\left(t-m\right)\left(t-2\right)\ge0\) (1)

Do \(t-2< 0\) ; \(\forall t\in\left[-1;1\right]\) nên (1) tương đương:

\(t-m\le0\)

\(\Leftrightarrow m\ge t\) ; \(\forall t\in\left[-1;1\right]\)

\(\Rightarrow m\ge1\)

NV
27 tháng 12 2022

Hàm xác định trên R khi và chỉ khi:

\(8cosx-6sinx-\left(3sinx-4cosx\right)^2-2m\ge0;\forall x\) (1)

Đặt \(3sinx-4cosx=t\)

\(\Rightarrow t^2=\left(3sinx-4cosx\right)^2\le\left(3^2+\left(-4\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le t\le5\)

(1) tương đương:

\(-2t-t^2-2m\ge0;\forall t\in\left[-5;5\right]\)

\(\Leftrightarrow2m\le-t^2-2t;\forall t\in\left[-5;5\right]\)

\(\Leftrightarrow2m\le\min\limits_{t\in\left[-5;5\right]}\left(-t^2-2t\right)\)

Xét hàm \(f\left(t\right)=-t^2-2t\) trên \(\left[-5;5\right]\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-5\right)=-15\) ; \(f\left(-1\right)=1\) ; \(f\left(5\right)=-35\)

\(\Rightarrow2m\le-35\Rightarrow m\le-\dfrac{35}{2}\)

28 tháng 8 2021

a, Vì \(-5sinx\ge-5\Rightarrow m-5sinx\ge0\forall x\Leftrightarrow m\ge5\)

b, Vì \(cos2x\ge-1\Rightarrow2m+cos2x\ge0\forall x\Leftrightarrow2m\ge1\Leftrightarrow m\ge\dfrac{1}{2}\)

c, TH1: \(m=0\) thỏa mãn yêu cầu bài toán

TH2: \(m>0\)

Khi đó: \(-m+1\le mcosx+1\le m+1\)

Yêu cầu bài toán thỏa mãn khi \(-m+1>0\Leftrightarrow m< 1\)

\(\Rightarrow0< m< 1\)

TH3: \(m< 0\)

Khi đó: \(m+1\le mcosx+1\le-m+1\)

Yêu cầu bài toán thỏa mãn khi \(m+1>0\Leftrightarrow m>-1\)

\(\Rightarrow-1< m< 0\)

Vậy \(m\in\left(-1;1\right)\)

21 tháng 6 2019

Cộng đồng học tập online | Học trực tuyến

Lần sau có bài em đăng trong link này để đc các bạn giúp đỡ nhé!

+)\(y=\frac{1}{\sqrt{1+\cos4x}}\)

ĐKXĐ: \(\cos4x+1>0\Leftrightarrow\cos4x>-1\Leftrightarrow\cos4x\ne-1\)

\(\Leftrightarrow4x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\), k thuộc Z

TXĐ: \(ℝ\backslash\left\{\frac{\pi}{4}+\frac{k\pi}{2}\right\}\), k thuộc Z

+) \(y=\sqrt{\tan x-\sqrt{3}}\)

ĐKXĐ: \(\hept{\begin{cases}\tan x-\sqrt{3}\ge0\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}\tan x\ge\tan\frac{\pi}{3}\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow}\frac{\pi}{3}+k\pi\le x< \frac{\pi}{2}+k\pi}\)

TXĐ:...