\(\sqrt{\frac{\sqrt{2}+sinx}{1-cos2x}}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

a) làm tương tự 2 bài mk đã giải nha.

b) \(y=2\cos^2x-2\sqrt{3}\sin x\cos x+1\)

\(=1-\left(\cos2x+\sqrt{3}\sin2x\right)\)

Lại có \(-2\le\cos2x+\sqrt{3}\sin2x\le2\) \(\Rightarrow-1\le y\le3\)

c) Vì \(\left\{{}\begin{matrix}0\le\sqrt[4]{\sin x}\le1\\0\le\sqrt{\cos x}\le1\end{matrix}\right.\)

Do đó \(-1\le y\le1\)

NV
31 tháng 5 2019

1/ ĐKXĐ: \(cos2x\ne0\Rightarrow2x\ne k\frac{\pi}{2}\Rightarrow x\ne\frac{k\pi}{4}\)

2/ ĐKXĐ:

\(\sqrt{2-2cosx}\ne2\Rightarrow2-2cosx\ne4\)

\(\Rightarrow cosx\ne-1\Rightarrow x\ne\pi+k2\pi\)

3/ ĐKXĐ: \(sin3x\ne0\Rightarrow3x\ne k\pi\Rightarrow x\ne\frac{k\pi}{3}\)

NV
31 tháng 5 2019

Khác nhau bạn

Ở câu 3, \(cot3x\) xác định nên \(sin3x\ne0\)

\(1-\sqrt{1+sin3x}\ne0\Rightarrow1+sin3x\ne1\Rightarrow sin3x\ne0\)

Cả 2 điều kiện xác định là cot3x xác đinh và mẫu xác định đều giống nhau là \(sin3x\ne0\)

NV
23 tháng 7 2020

a/ ĐKXĐ:

\(sin\left(\frac{\pi}{2}.sinx\right)\ne0\Rightarrow\frac{\pi}{2}.sinx\ne k\pi\)

\(\Rightarrow sinx\ne2k\)

\(-1\le sinx\le1\Rightarrow sinx\ne0\Rightarrow x\ne k\pi\)

b/

\(sinx-1\ge0\Leftrightarrow sinx\ge1\Rightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

c/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow sin4x\ne0\)

\(\Rightarrow x\ne\frac{k\pi}{4}\)

d/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sinx+cotx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin^2x+cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne k\pi\\-cos^2x+cosx+1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\cosx\ne\frac{1-\sqrt{5}}{2}\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\pm arccos\left(\frac{1-\sqrt{5}}{2}\right)+k2\pi\end{matrix}\right.\)

e/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\Rightarrow x\ne k\pi\)