K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2022

1.

\(x^2+3x+5=\left(x+1\right)\left(x+2\right)+3\)

Tích 2 số tự nhiên liên tiếp chia 7 chỉ có các số dư 2, 5, 6 nên \(\left(x+1\right)\left(x+2\right)+3\) ko chia hết cho 7 với mọi x

2.

\(x^4+x^2+8=x^2\left(x^2+1\right)+8\)

Tích 2 tự nhiên liên tiếp chia 11 chỉ có các số dư 1, 2, 6, 8, 9 nên \(x^2\left(x^2+1\right)+8\) ko chia hết cho 11 với mọi x

12 tháng 1 2022

1.Ta có x^2 + 3x + 5 ⋮ 7 <=> x^2 - 4x + 5 - 7x ⋮ 7

<=> x^2 - 4x + 4 + 1 ⋮ 7 <=> (x-2)^2 + 1  ⋮ 7

<=> (x-2)^2 : 7 dư 6

Mà (x-2)^2 là số CP => (x-2)^2 : 7 dư 1,4,2

=> Vô lí. Vậy n ∈ ∅

2.Ta có x^4 + x^2 + 8 ⋮ 11 <=> x^4 + x^2 : 11 dư 3

<=> x^2(x^2+1) : 11 dư 3

Mà x^2(x^2+1) là 2 số nguyên dương liên tiếp

=> x^2(x^2+1) : 11 dư 2,6,1,9,8

=> Vô lí. Vậy n ∈ ∅

9 tháng 2 2018

\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)  \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)

\(M=3\)

9 tháng 2 2018

b) \(\sqrt{x}=M\)

\(\Leftrightarrow x=M^2\)

thay vào ta có: 

\(x=3^2\)

\(x=9\)

c) \(M=3\in N\)

\(\Rightarrow x=3\)

d) \(M>1\Leftrightarrow x>1\)

27 tháng 7 2018

KHÔNG BIẾT

1 tháng 11 2015

Để thỏa bài toán thì: 

\(x^2-3x-1=a^2\left(a\in N\right)\Leftrightarrow4x^2-12x-4=4a^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2a\right)^2=13\Leftrightarrow\left(2x-3+2x\right)\left(2x-3-2a\right)=13\)

Tới đây chắc bạn biết giải rồi nhỉ?

a: \(P=\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-1\)

\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1-x-\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để \(P^2>P\) thì P(P-1)>0

\(\Leftrightarrow\left[{}\begin{matrix}P>1\\P< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}>0\\\sqrt{x}-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

9 tháng 11 2016

a/ Đkxđ: x\(\ge\)0 x\(\ne\)4

=\(\frac{3\left(\sqrt{x}+2\right)+2\left(\sqrt{x}-2\right)+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{5\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{5}{\sqrt{x}-2}\)

b/ Với x\(\ge\)0 vã\(\ne\)4

Để M\(\in\)Z \(\Leftrightarrow\) \(\frac{5}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\) \(\sqrt{x}-2\inƯ\left(5\right)\)

\(\begin{cases}\sqrt{x}-2=5\\\sqrt{x}-2=-5\\\sqrt{x}-2=1\\\sqrt{x}-2=-1\end{cases}\Rightarrow\begin{cases}x=49\left(tmĐKXĐ\right)\\KhongcogiatriTm\\x=9\left(tmĐKXĐ\right)\\x=1\left(tmĐKXĐ\right)\end{cases}\)

Vậy để M\(\in\)Z thì x=.....

c/ Với...

Để M<2 thì \(\frac{5}{\sqrt{x}-2}< 2\Rightarrow\frac{5-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}< 0\)

\(\left[\begin{array}{nghiempt}\hept{\begin{cases}9-2\sqrt{x}>0\\\sqrt{x}-2< 0\end{array}\right.\\\hept{\begin{cases}9-2\sqrt{x}< 0\\\sqrt{x}-2>0\end{array}\right.\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{81}{4}\\x< 4\end{array}\right.\\\hept{\begin{cases}x>\frac{81}{4}\\x>4\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x< 4\\x>\frac{81}{4}\end{array}\right.}\)

10 tháng 11 2016

thanks

 

 

26 tháng 2 2020

M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)

    =\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)

NV
5 tháng 10 2019

\(x^2+x+1\) là số chính phương

\(\Rightarrow x^2+x+1=k^2\)

\(\Rightarrow4x^2+4x+1+3=4k^2\)

\(\Rightarrow4k^2-\left(2x+1\right)^2=3\)

\(\Rightarrow\left(2k+2x+1\right)\left(2k-2x-1\right)=3\)

Phương trình ước số cơ bản, bạn tự giải

5 tháng 10 2019

số tự nhiên