Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{\left(5z-25\right)-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)\(=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{\left(5z-3x-4y\right)-\left(25-3+12\right)}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)
Khi đó:\(\frac{3x-3}{6}=2\Rightarrow\frac{x-1}{2}=2\Rightarrow x=5;\frac{4y+12}{16}=2\Rightarrow\frac{y+3}{4}=2\Rightarrow y=5\)
\(\frac{5z-25}{30}=2\Rightarrow\frac{z-5}{6}=2\Rightarrow z=17\)
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)\(=\frac{5z-25-3x+3-4y-12}{6-16-30}\)\(=\frac{\left(5z-3x-4y\right)-\left(25-3+12\right)}{-40}\)\(=\frac{50-34}{-40}=\frac{16}{-40}=\frac{2}{-5}\)
+) \(\frac{x-1}{2}=\frac{-2}{5}\Rightarrow5\left(x-1\right)=-4\Rightarrow x-1=\frac{-4}{5}\)\(\Rightarrow x=\frac{-4}{5}+1=\frac{1}{5}\)
+)\(\frac{y+3}{4}=\frac{-2}{5}\Rightarrow5\left(y+3\right)=-8\Rightarrow y+3=\frac{-8}{5}\)\(\Rightarrow y=\frac{-8}{5}-3=\frac{-23}{5}\)
+)\(\frac{z-5}{6}=\frac{-2}{5}\Rightarrow5\left(z-5\right)=-12\Rightarrow z-5=\frac{-12}{5}\)\(\Rightarrow z=\frac{-12}{5}+5=\frac{13}{5}\)
Vậy...
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
1. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}\)
\(=\frac{\left(5z-3x-4y\right)-34}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x-1}{2}=2\)\(\Rightarrow x-1=4\)\(\Rightarrow x=5\)
\(\frac{y+3}{4}=2\)\(\Rightarrow y+3=8\)\(\Rightarrow y=5\)
\(\frac{z-5}{6}=2\)\(\Rightarrow z-5=12\)\(\Rightarrow z=17\)
Vậy \(x=5\); \(y=5\)và \(z=17\)
2. Từ \(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=\frac{a}{21}=\frac{b}{14}\)(1)
Từ \(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
\(=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow a=21.2=42\); \(b=14.2=28\); \(z=10.2=20\)
Vậy \(a=42\); \(b=28\); \(z=20\)