Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta co: HK\(\perp\)AC
AB vuông góc với AC
Do đó: HK//AB
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
d: Xét ΔAIC và ΔAKC có
AI=AK
góc IAC=góc KAC
AC chung
Do đó: ΔAIC=ΔAKC
5.
a) Xét \(\Delta ABH\) và \(\Delta ACH\) có :
AB = AC ( do \(\Delta ABC\) cân tại A )
AH : cạnh chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
do đó \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\) HB = HC ( 2 cạnh tương ứng )
b) Có HB = HC ( chứng minh trên )
\(\Rightarrow\) HB + HC = BC
HB + HC = 8cm
2HB = 8cm
\(\Rightarrow\) HB = 4cm
Áp dụng định lý Pytago cho \(\Delta AHB\) có \(\widehat{AHB}=90^o\)
\(AB^2=BH^2+AH^2\)
\(5^2=4^2+AH^2\)
25 = 16 + \(AH^2\)
\(AH^2\) = 25 - 16
\(AH^2\) = 9
\(\rightarrow AH=3cm\)
c) Xét \(\Delta BDH\) và \(\Delta ECH\) có :
\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A )
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
BH = HC ( chứng minh câu a )
do đó \(\Delta BDH=\Delta ECH\) ( cạnh huyền góc nhọn )
\(\Rightarrow\) HD = HE ( 2 cạnh tương ứng )
nên \(\Delta HDE\) cân tại H ( dấu hiệu nhận biết \(\Delta\) cân )
P/s : lúc nào rảnh làm tiếp nhé bây h muộn r , lm đại 1 bài dễ nhất trc ( xử lí lũ kia sau ) .
A B C K I H
Vì AB vuông với AC ; HK vuông với AC => AB // HK
b) AH là đường trung trực của KI => tam giác AKI cân hoặc chúng minh tam giác AHI = tam giác AHK
c) Ta có : góc BAK + góc KAH = 90
mà KAH + HKA = 90 độ
nên BAK = HKA mà HKA = AIK => AIK = BAK
d) Vì AKH = AIH => KAH = IAH ( 90 - AKH = 90 - IAH)
Xét tam giác AIC và tam giác AKC ta có :
Ak = AI (cmt)
AC chung
KAH = IAH (cmt)
=> tam giác AIC = tam giác AKC
a: HK\(\perp\)AC
AB\(\perp\)AC
Do đó: HK//AB
b: Xét ΔAIK có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAIK cân tại A
c: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{KAI}=90^0\)
mà \(\widehat{HAK}=\widehat{KAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
d: Xét ΔAIC và ΔAKC có
AI=AK
\(\widehat{CAI}=\widehat{KAI}\)
AC chung
Do đó: ΔAIC=ΔAKC
1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC
A B C D E H K
a) Xét tam giác ABD và tam giác ACE có:
\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)
b) AE=AD(vì tam giác ABD=tam giác ACE
=> tam giác AED cân tại A
c) Xem lại đề
d) Xét tam giác BCK có:
\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)
=> CD là đường trung trực của BK
=> BC=CK
=> tam giác BCK cân tại C
=>\(\widehat{CBK}=\widehat{CKB}\)
Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)
=> góc ECB= góc CKB
3) Đề là:
Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH:
a/ MA = MB
b/ OM là đường trung trực của AB
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ? (bn viết khó hiểu qá nên mk xem lại trong vở)
Tự vẽ hình!
a/ Xét tam giác OAM và tam giác OBM, có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
b/ Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH, có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2)
=> MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
c/ Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H có: OA2 = OH2 + AH2 ( định lí Py-ta-go)
=> 52 = OH2 + 32
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
\(\Rightarrow OH=\sqrt{16}\)
\(\Rightarrow OH=4cm\)
d) Gọi M là giao điểm của HA và KI
\(\Delta\)HKB = \(\Delta\)HIC ( theo c)
=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )
=> ^BHA - ^BHK = ^CHA - ^CHI
=> KHA = ^IHA hay ^KHM = ^IHM (1)
Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung
=> \(\Delta\)IHM = \(\Delta\)KHM
=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ
=> ^HMK = ^HMI = 90 độ
hay HA vuông KI
mà HA vuông BC
=> KI // BC
A B C H
a) Xét tam giác AHB và tam giác AHC có:
AH chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)
AB=AC (tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC (đpcm)
b) Xét tam giác ABC cân tại A có AH là đường cao
=> AH trùng với đường trung tuyến
=> H là trung điểm BC => HB=HC (đpcm)
A B C K H I
a,áp dụng định lý py-ta-go vào tam giác vuông ABC ta có
\(AB^2+AC^2=BC^2\)
\(3^2+4^2=BC^2\)
\(9+16=BC^2\)
\(25=BC^2\)
\(\Rightarrow BC=5cm\)
b, Ta có :
\(\hept{\begin{cases}HK\perp AC\left(gt\right)\\AB\perp AC\left(\Delta ABC\perp A\right)\end{cases}}\)
\(\Rightarrow HK//AB\left(\perp AC\right)\)
c, Xét tam giác vuông AKH và tam giác vuông AIH có:
AH : cạnh chung
HI=HK(GT)
=> tam giác vuông AKH = tam giác vuông AIH ( 2 cạnh góc vuông )
=> AK = AI ( 2 cạnh tương ứng )
=> tam giác AKI cân tại A(AK = AI : 2 CẠNH BÊN)
d, ta có tam giác AKI cân tại A( cmt )
\(\Rightarrow\widehat{AIK}=\widehat{AKI}\)( 2 góc ở đáy) (1)
lại có HK // AB ( cmt)
=>\(\widehat{BAK}=\widehat{AKI}\)( 2 góc slt) (2)
từ (1) và (2) =>\(\widehat{AIK}=\widehat{BAK}\left(=\widehat{AKI}\right)\)
e, ta có tam giác vuông AKH = tam giác vuông AIH (cmt)
\(\Rightarrow\widehat{KAH}=\widehat{IAH}\)( 2 Góc tương ứng)
xét tam giác AIC và tam giác AKC có :
AK=AI(GT)
AC: cạnh chung
\(\widehat{KAH}=\widehat{IAH}\)(CMT)
=> tam giác AIC = tam giác AKC (C-G-C)
mk giải bài ktra cho các bn lớp 7a nè ko bt z đây mà chép
Câu 5 (bài cuối cùng ý)
Bài 1:
Ta có hình vẽ: A B C K H I 1 1 1 a) Ta có: AB \(\perp\) AC
HK \(\perp\) AC
=> AB // HK
b) Xét 2 tam giác vuông AHK và tam giác AHI có:
HK = HI (gt)
AH là cạnh chung
=> tam giác AHK = tam giác AHI (2 cạnh góc vuông)
=> AK = AI (2 cạnh tương ứng)
=> tam giác AKI cân tại A
c) Vì AB // HK nên
góc B1 = K1 (so le trong)
mà góc K1 = góc I1 (vì tam giác AHK = tam giác AHI)
=> góc B1 = I1
Vậy góc BAK = góc AIK
d) Xét 2 tam giác vuông CHK và tam giác CHI có:
HK = HI (gt)
CH là cạnh chung
=> tam giác CHK = tam giác CHI (2 cạnh góc vuông)
=> CH = CI (2 cạnh tương ứng)
Xét 2 tam giác AIC và tam giác AKC có:
AK = AH (cmt)
CH = CI (cmt)
AC là cạnh chung
=> tam giác AIC = tam giác AKC (c-c-c)
Bài 3:
Ta có hình vẽ: A B C I H K 10 10 12 a) Xét 2 tam giác vuông ACI và tam giác BCI có:
CA = CB (=10 cm)
CI là cạnh chung
=> tam giác ACI = tam giác BCI (cạnh huyền- cạnh góc vuông)
=> AI = BI (2 cạnh tương ứng)
b) Ta có: AI + BI = AB
mà AI = BI (cmt)
AB = 12 cm
=> AI = BI = \(\dfrac{12}{2}\) = 6 cm
Xét tam giác ACI vuông tại I áp dụng định lý Pytago có:
\(CA^2 = AI^2 + CI^2 \)
hay \(10^2 = 6^2 + CI^2\)
=> \(CI^2 = 10^2 - 6^2 = 100 - 36 = 64\)
=> \(CI = \) \(\sqrt{64}\) = 8
c) Xét 2 tam giác vuông AHI và tam giác BKI có:
AI = BI (cmt)
góc A = góc B (vì tam giác ACI = tam giác BCI)
=> tam giác AHI = tam giác BKI (cạnh huyền- góc nhọn)
=> HI = KI (2 cạnh tương ứng)