Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K H I
a,áp dụng định lý py-ta-go vào tam giác vuông ABC ta có
\(AB^2+AC^2=BC^2\)
\(3^2+4^2=BC^2\)
\(9+16=BC^2\)
\(25=BC^2\)
\(\Rightarrow BC=5cm\)
b, Ta có :
\(\hept{\begin{cases}HK\perp AC\left(gt\right)\\AB\perp AC\left(\Delta ABC\perp A\right)\end{cases}}\)
\(\Rightarrow HK//AB\left(\perp AC\right)\)
c, Xét tam giác vuông AKH và tam giác vuông AIH có:
AH : cạnh chung
HI=HK(GT)
=> tam giác vuông AKH = tam giác vuông AIH ( 2 cạnh góc vuông )
=> AK = AI ( 2 cạnh tương ứng )
=> tam giác AKI cân tại A(AK = AI : 2 CẠNH BÊN)
d, ta có tam giác AKI cân tại A( cmt )
\(\Rightarrow\widehat{AIK}=\widehat{AKI}\)( 2 góc ở đáy) (1)
lại có HK // AB ( cmt)
=>\(\widehat{BAK}=\widehat{AKI}\)( 2 góc slt) (2)
từ (1) và (2) =>\(\widehat{AIK}=\widehat{BAK}\left(=\widehat{AKI}\right)\)
e, ta có tam giác vuông AKH = tam giác vuông AIH (cmt)
\(\Rightarrow\widehat{KAH}=\widehat{IAH}\)( 2 Góc tương ứng)
xét tam giác AIC và tam giác AKC có :
AK=AI(GT)
AC: cạnh chung
\(\widehat{KAH}=\widehat{IAH}\)(CMT)
=> tam giác AIC = tam giác AKC (C-G-C)
mk giải bài ktra cho các bn lớp 7a nè ko bt z đây mà chép
Câu 5 (bài cuối cùng ý)
A B C K I H
Vì AB vuông với AC ; HK vuông với AC => AB // HK
b) AH là đường trung trực của KI => tam giác AKI cân hoặc chúng minh tam giác AHI = tam giác AHK
c) Ta có : góc BAK + góc KAH = 90
mà KAH + HKA = 90 độ
nên BAK = HKA mà HKA = AIK => AIK = BAK
d) Vì AKH = AIH => KAH = IAH ( 90 - AKH = 90 - IAH)
Xét tam giác AIC và tam giác AKC ta có :
Ak = AI (cmt)
AC chung
KAH = IAH (cmt)
=> tam giác AIC = tam giác AKC
ta có:vì ab vuông với ah
hk vuông với ah
=>ab song song với hk(từ vuông góc đến song song)
b)cm được tam giác akh=aih(2 cạnh góc vuông)
góc ahk=ahi=90 độ
ah chung
hk=hi
=>ak=ai=> tam giác aki cân tại a
c)vì ab song2 với hk=>góc bak=akh(slt)(1)
mà tam giác aki cân tại a(cm trên)=>góc akh=aih(2)
từ (1),(2)=>đpcm
d)tam giác aic= akc(c.g.c) vì:
ac chung
ak=ai(cm câu b)
vì tam giác akh=aih(cm câu b)=>góc kah=hac
=>đpcm
xong rùi nhé!
a: HK\(\perp\)AC
AB\(\perp\)AC
Do đó: HK//AB
b: Xét ΔAIK có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAIK cân tại A
c: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{KAI}=90^0\)
mà \(\widehat{HAK}=\widehat{KAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
d: Xét ΔAIC và ΔAKC có
AI=AK
\(\widehat{CAI}=\widehat{KAI}\)
AC chung
Do đó: ΔAIC=ΔAKC
a) Ta có: AB⊥AC(ΔABC vuông tại A)
HK⊥AC(Gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
b) Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
KH=IH(gt)
AH chung
Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)
Suy ra: AK=AI(hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân)
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
Bài 1:
Ta có hình vẽ: A B C K H I 1 1 1 a) Ta có: AB \(\perp\) AC
HK \(\perp\) AC
=> AB // HK
b) Xét 2 tam giác vuông AHK và tam giác AHI có:
HK = HI (gt)
AH là cạnh chung
=> tam giác AHK = tam giác AHI (2 cạnh góc vuông)
=> AK = AI (2 cạnh tương ứng)
=> tam giác AKI cân tại A
c) Vì AB // HK nên
góc B1 = K1 (so le trong)
mà góc K1 = góc I1 (vì tam giác AHK = tam giác AHI)
=> góc B1 = I1
Vậy góc BAK = góc AIK
d) Xét 2 tam giác vuông CHK và tam giác CHI có:
HK = HI (gt)
CH là cạnh chung
=> tam giác CHK = tam giác CHI (2 cạnh góc vuông)
=> CH = CI (2 cạnh tương ứng)
Xét 2 tam giác AIC và tam giác AKC có:
AK = AH (cmt)
CH = CI (cmt)
AC là cạnh chung
=> tam giác AIC = tam giác AKC (c-c-c)
Bài 3:
Ta có hình vẽ: A B C I H K 10 10 12 a) Xét 2 tam giác vuông ACI và tam giác BCI có:
CA = CB (=10 cm)
CI là cạnh chung
=> tam giác ACI = tam giác BCI (cạnh huyền- cạnh góc vuông)
=> AI = BI (2 cạnh tương ứng)
b) Ta có: AI + BI = AB
mà AI = BI (cmt)
AB = 12 cm
=> AI = BI = \(\dfrac{12}{2}\) = 6 cm
Xét tam giác ACI vuông tại I áp dụng định lý Pytago có:
\(CA^2 = AI^2 + CI^2 \)
hay \(10^2 = 6^2 + CI^2\)
=> \(CI^2 = 10^2 - 6^2 = 100 - 36 = 64\)
=> \(CI = \) \(\sqrt{64}\) = 8
c) Xét 2 tam giác vuông AHI và tam giác BKI có:
AI = BI (cmt)
góc A = góc B (vì tam giác ACI = tam giác BCI)
=> tam giác AHI = tam giác BKI (cạnh huyền- góc nhọn)
=> HI = KI (2 cạnh tương ứng)
a: Ta co: HK\(\perp\)AC
AB vuông góc với AC
Do đó: HK//AB
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
d: Xét ΔAIC và ΔAKC có
AI=AK
góc IAC=góc KAC
AC chung
Do đó: ΔAIC=ΔAKC